Loading...
HomeMy WebLinkAbout1989 Project Completion Report Cayuga Lake Ammonia Toxicity AssessmentPROJECT COMPLETION REPORT CAYUGA LAKE AMMONIA TOXICITY ASSESSMENT JUNE 5 ,1989 ELIZABETH C.MORAN,Ph D. ENVIRONMENTAL SCIENTIST CAZENOVIA NY 13035 Elizabeth C.Moran,Ph.D. Environmental Scientist 1812 Route 20 West Cazenovia NY 13035 Mr.William Grey,P.E.City Engineer,City of Ithaca Mr.John Dougherty,Superintendent of Public Works,City of Ithaca Mr.Larry Fabbroni,P.E.Asst.Superintendent of Public Works,City of Ithaca Mr.Dominick Cafferillo,Deputy Comptroller,City of Ithaca Members of the Special Joint Subcommittee,City and Town of Ithaca, Town of Dryden May 26,1989 Project C-36-1095-03 Gentlemen: I am pleased to submit the project completion report for the Cayuga Lake Study,mandated as a condition of the construction grant for the upgrade of the Ithaca Area Wastewater Treatment Facility.The report details the four-year study of the potential for ammonia toxicity resulting from the new lake outfall. The results of the study indicate that water quality,specifically ammonia concentrations,has improved markedly in the south basin of Cayuga Lake with the upgrade and reconstruction of the wastewater treatment facility.There were no detected violations of the 0.05 mg/l un-ionized ammonia standard after completion of the wastewater treatment facility and new lake outfall.Prior to completion,there were 23 detected violations (2.42%of samples). The percentage of samples violating a more stringent chronic un-ionized ammonia standard decreased from 4.7%to 1.5%.There were no violations of the Environmental Protection Agency's acute ammonia toxicity standards either before or after discharge through the new lake outfall. Throughout the study,environmental conditions contributing to the ammonia dynamics in lakes were monitored.An atmospheric monitoring station was established on the breakwater at the south end of the lake.Streamflow data were compiled.A current meter was placed in the lake for almost one full year to record currents and water transport at the outfall site.Water temperature,pH, dissolved oxygen and clarity were monitored in the south end of Cayuga Lake. These data were used to evaluate the conditions under which ammonia toxicity conditions might develop/ i Two simple models were used to predict the impacts of varying loads and environmental conditions on ammonia concentrations.One model was theoretical,considering that ammonia load is moved away from the outfall by diffusion.The second was a statistical model,relating the observed pattern of ammonia concentration to environmental conditions of wastewater load,water pH and temperature,and secchi disk transparency.The models were used to project the "worst case"conditions of ammonia concentrations in the lake. The analysis demonstrates that even under "worst case"conditions,the concentrations of un-ionized ammonia in the south end of the lake will not create toxic conditions for fish outside of an acceptable mixing zone.Therefore, the new lake outfall of the upgraded and rebuilt Ithaca Area Wastewater Treatment Facility is not creating unacceptable water quality conditions. I understand that the report will be reviewed by the New York State Department of Environmental Conservation and the U.S.Environmental Protection Agency.I will continue to be available for any necessary explanation or revisions. I have enjoyed working with all of you on this exciting project. Very truly yours, Elizabeth C.Moran TABLE OF CONTENTS TRANSMITTAL LETTER Page i INTRODUCTION Page 1 METHODS Page 6 RESULTS Page 13 DISCUSSION Page 36 LIST OF TABLES Table 1.Water temperature values at 17 Cayuga Lake stations page 18 Table 2.Secchi disk transparency values at 17 Cayuga Lake stations page 20 Table 3.pH values at 17 Cayuga Lake stations page 21 J Table 4.Dissolved oxygen at 17 Cayuga Lake stations,pre and post new lake outfall discharge page 24 Table 5.Total ammonia at 17 Cayuga Lake stations,pre and post new lake outfall discharge page 26 Table6.Un-ionized ammonia (NH3)at 17 Cayuga Lake stations, pre and post new lake outfall discharge page 33 Table 7.Ammonia standard violations,pre and post new lake outfall discharge page 34 Table 8.Results of regression analysis of 1988 lake data page 41 J Table 9.Predicted "worst case"ammohia concentrations page 43 LIST OF FIGURES Figure 1.Project organizational chart page 4 Figure 2.Decision sequence for evaluation of ammonia toxicity at Cayuga Lake outfall page 5 Figure 3.Location of atmospheric monitoring station page 7 Figure 4.Location of current meter page 8 Figures.Water quality monitoring stations page 10 Figure 6.Wind speed at Cayuga Lake monitoring station, 1985-1989 page 14 Figure 7.Air temperature at Cayuga Lake monitoring station, 1985-1989 page 14 Figure 8.Precipitation at Cayuga Lake monitoring station, 1985-1989 page 15 Figure 9.Net water movement at lake outfall site.page 16 Figure 10.Station 3 water temperature page 19 Figure 11.Station 3 secchi disk transparency page 19 Figure 12.Station 3 pH page 22 Figure 13.Station 3 dissolved oxygen page 25 Figure 14.Station 3 percent saturation dissolved oxygen page 25 Figure 15.Isopleths of total ammonia nitrogen.October 1986 page 27 Figure 16.Isopleths of total ammonia nitrogen.September 1987 page 28 Figure 17.Isopleths of total ammonia nitrogen.October 1987 page 29 Figure 18.Isopleths of total ammonia nitrogen.September 1988 page 30 LIST OF FIGURES,cont. Figure 19.Isopleths of total ammonia nitrogen.October 1988 page 31 Figure 20.Relationship between un-ionized ammonia at Station 3 (lake outfall)and three toxicity standards page 35 Figure 21.Predicted and observed ammonia attenuation with distance from lake outfall (9/7/88)page 38 Figure 22.Predicted and observed ammonia attenuation with distance from lake outfall (10/5/88)page 39 LIST OF APPENDICES Appendix A.Project scope and workplan Appendix B.Field data sheets,water quality study Appendix C.Examples of atmospheric monitoring data Appendix D.Current study reports and summaries Appendix E.1988 water quality data INTRODUCTION 1.Objective The objective of this study was to comply with a special condition of the construction grant for the Ithaca Area Wastewater Treatment Facility (Project C- 36-1095-03).The grant condition,imposed in early 1984 after an advanced treatment review by the Environmental Protection Agency (EPA),mandated an assessment of the potential for ammonia toxicity from the new lake outfall of the upgraded wastewater treatment facility.Water quality monitoring of Cayuga Lake both before and after completion of the facility and outfall was required. The issue of concern was whether the outfall could create plumes of toxic concentrations of ammonia that would impede fish passage through the south basin of the lake. Efforts by the New York State Department of Environmental Conservation (NYSDEC)and EPA and their consultants to predict the duration and extent of any ammonia toxicity revealed several critical deficiencies in the Cayuga Lake data base.There was no scientific or engineering consensus on many important parameters of a predictive model.Factors such as water depth at the outfall site,lake pH and water temperature,flow through the tributaries,and lake current velocity were all disputed.Without an improved base of information,one could not predict the extent to which ammonia from the new plant outfall would be diluted or flushed from the outfall site through dispersion and/or advection,or the extent to which ammonia would be toxic. 2.Project Scope and Workplan After analysis of the existing data base on Cayuga Lake,and negotiations with the state and federal regulatory agencies,a project scope and workplan were agreed upon (Appendix A).The workplan was developed to provide the critical data needed to predict the potential for ammonia toxicity from the lake outfall.The following issues were addressed: (a)Characteristics of lake currents at the outfall site.The extent to which ammonia in the wastewater effluent is diluted and carried away from the outfall site depends on the existence and strength of lake currents.The EPA predictive model assumed completely quiescent conditions at the outfall site; without lake currents,ammonia movement would be by dispersion only,and 1 toxic plume conditions could develop.The NYSDEC predictive model used data collected 13 miles north of the outfall site to show that lake currents are sufficient to avoid ammonia toxicity.The workplan called for measuring lake currents as close as possible to the outfall site. (b)The direction and magnitude of the prevailing winds is an important forcing function for the pattern of lake currents.Atmospheric data close to the lake outfall site were not available,and the extent to which quiescent conditions might develop was unknown.The Ithaca atmospheric monitoring station is located east-southeast of the City of Ithaca,at an elevation of 960 ft., while the surface of Cayuga Lake is at an elevation of 382 ft.As there was no consensus developed concerning the applicability of data from the higher elevation site,the workplan called for installation of an atmospheric monitoring station as close as possible to the outfall site. (c)Lake pH and temperature.The pH and temperature of lake water are important considerations in predicting ammonia toxicity.Total ammonia in water exists in the ionized (NH4+),and the un-ionized (NH3)fractions.The un-ionized fraction is toxic to fish and other aquatic organisms.The percentage of ammonia in the un-ionized fraction depends on the water pH and temperature.In addition,the toxicity of unionized ammonia varies as a function of pH and temperature.New York State is adopting standards for ammonia in water consistent with the federal standards,which vary with pH and temperature.Because of the strong effects of pH and temperature on ammonia fraction and toxicity,reliable estimates of patterns of pH and water temperature in the south end of Cayuga Lake were essential.One predictive model used a pH of 8.3 as a critical design condition,a second considered a pH of 8.0 to be more realistic.This 0.3 pH unit difference translated into a doubling of the toxic ammonia fraction.The workplan called for monitoring the pH and water temperature in the south basin of Cayuga Lake. (d)The concentrations of ammonia in the south basin of the lake beforeand after completion of the new outfall and start uo of the new facility.Actual in¬ lake data are the culmination of the complex conditions relating to wastewater ammonia inputs and transformations.The workplan called for monitoring ammonia concentrations at seventeen stations representing a grid around the new outfall site.The measured data indicate the extent to which ammonia toxicity conditions might develop.By collecting "before"data,natural background conditions and the ammonia concentrations resulting from the 2 Cayuga Heights wastewater treatment facility were assessed. (e)Finally,under what conditions of wastewater loading and intake conditions might ammonia toxicity develop?The workplan called for compiling the streamflow,wind speed and direction,wastewater load and lake pH and temperature data during each ammonia Sampling event.This extensive data base,representing a significant improvement over the available data at the time of the original modeling efforts in 1983 -1984,could be used to calibrate and verify any revised predictive model developed for this situation. The assessment of the potential for ammonia toxicity from the Ithaca Area Wastewater Treatment Facility was divided into in four functional components: the current study,the atmospheric monitoring study,the water quality study and the biological impacts (fishery )study,Project organization (Figure 1)followed the functional areas of the assessment,with an overall project manager reporting to the City and Town of Ithaca and the Town of Dryden (the owners). Each contractual agreement was reviewed by the state and federal regulatory agencies when the ammonia toxicity assessment was approved for project funding. A detailed project workplan and decision rules for the four Study components were agreed to prior to initiation of the project in October 1984.The decision rules related not only to the acceptable results in terms of areal extent and concentration of un-ionized ammonia,but also to the types of data to be collected and analyses to be performed (Figure 2).Beyond the collection of the water chemistry ,current,and atmospheric data,the initiation of each subsequent phase was dependent upon the results of the previous phase.For example,only if concentrations of un-ionized ammonia violated chronic toxicity standards beyond the negotiated mixing zone would a fishery population study be performed. 3 Figure 1.Project organizational chart Figure 2.Decision sequence for evaluation of ammonia toxicity at Cayuga Lake outfall. 5 D METHODS 1.Atmospheric Monitoring An atmospheric monitoring station was established on the breakwater at the south end of Cayuga Lake (Figure 3).The station was designed to monitor wind speed and direction,precipitation,and air temperature.Automated equipment was installed to scan the environmental variables once per minute, process and store hourly means and extreme values.A telephone line was installed in order to connect the monitoring station instrumentation to a j computer at the Northeast Regional Climate Center (NRCC)at Cornell University.Data were retrieved daily by the NRCC computer.In addition, backup instruments that could be read manually in the event of a failure of the automated system were installed.The following equipment was installed on site: J ;............. '■<...;.;?- Thermograph,with recording charts Instrument shelter Eleven inch rain-gauge j Weighing rain-gauge Totalizing anemometer Micrologger and enclosure Answer modem Temperature probe Rain-gauge tipping bucket Wind speed sensor Cross arm sensor mount Wind tower (10 meter) 2.Current Study An Aanderaa Instruments,Model RCM-4 Savonius Rotor current meter J was deployed in the south end of Cayuga Lake on November 13,1984 by the RV Explorer ,a research vessel from Hobart William Smith Colleges in Geneva NY.The meter was positioned approximately one meter above the lake bottom,in a depth of water between three and four meters.The location chosen was as close as feasible to the Site of the proposed lake outfall (Figure 4).Current velocity and direction were sampled and recorded every 30 6 Figure 4.Location of current meter. Pg.8 minutes.The battery pack and recording unit were replaced on May 11,1985, without disturbing the meter.The meter was recovered on October 15,1985. 3.Water Quality (a).Location of sampling sites A sampling grid of seventeen stations in the south end of Cayuga Lake was J established to evaluate water quality conditions before and after discharge through the new lake outfall.(Figure 5).The stations were selected based on the following criteria:distance from new lake outfall,direction from new lake outfall,feasibility,of location using magnetic bearings from established markers (such as lights),proximity to Cayuga Heights wastewater treatment facility outfall,and proximity to tributary confluence. Stations were classified into three zones based on their distance from the new lake outfall'v0^o^^ 3 zone 1:vertical distance greater than 500 meters from outfall zone 2:250 -500 meters from outfall zone 3:within 250 meters of the outfall. The distances were based on the negotiated mixing zone for ammonia. (b).Frequency of sampling Sampling was conducted from April through November of the years 1985, 1986,and 1988,and July through November in 1987.During the months of April,May,June,July,August and November,two samplings per month were conducted.Weekly sampling was conducted in September and October. (c).Depth of Sampling Each station was sampled at two depths,one-half meter below the water surface,and one-half meter above the bottom.The sole exception was station eight,which was in a region of shallow water;one mid-depth sample was obtained at a depth of less than one meter. 9 (d).Sampling procedures Each sampling trip began at the Ithaca Boating Center,a marina on the west share of Cayuga Inlet.The sampling team met a t the marina at 12:30 pm each sampling day.A Model 57 YSI dissolved oxygen (DO)meter was prepared on shore;the membrane was changed and the meter was standardized prior to each sampling trip.A Fisher portable pH meter was standardized on shore using buffers at pH 4,7 and 10.Acid-washed,rinsed sample bottles were assembled and numbered prior to departure.Chain of custody procedures were observed (Appendix B). Sampling stations were located by a combination of magnetic bearings and visual landmarks.The boat was equipped with an electronic depth sounding and recording device.We anchored at each station.Typically,sampling at the first station (station number ten)was initiated close to 1:00 pm.Water samples were collected from the two depths using a Scott bottle (a vertical Van Dorn type sampling device).The Scott bottle was emptied into a one liter wide¬ mouthed bottle,which was rinsed with the sample water,then refilled.pH was measured using the Fisher portable meter that had ben standardized on shore. The standardization was checked at regular intervals throughout the sampling run.100 ml aliquots were measured using a graduated cylinder (TD type),and poured into 125 ml sample bottles for the ammonia analyses.The ammonia samples were preserved immediately with 0.8 ml of 4N H2SO4,dispensed by an automatic pipette on board.The sample bottles were transferred to an ice- filled cooler.Dissolved oxygen and water temperature were measured using the YSI model 57 DO meter.Secchi disk transparency was measured using a standard limnological secchi disk on a calibrated cable.Field data sheets were used to record field information ,sample bottle numbers,weather notes,and any unusual circumstances (Appendix B). Once on shore,the ice-filled cooler with the ammonia samples was transferred to the Cornell University Agronomy Service Laboratory (Analytical Lab),about two miles from the marina.Sample bottles were transferred to a laboratory refrigerator (4°C)to await analysis.Holding time varied from one to fifteen days. (e).Analytical procedures 11 The Analytical Lab utilized a Technicon Auto-Analyzer to perform the ammonia analyses,using the phenate method.The known samples used to prepare the standard curve for the automated analysis were preserved with the same batch of sulfuric acid as was used on board the sampling boat,after quality assurance/quality control (QA/QC)review revealed the ammonia determination to be highly dependent upon pH.The detection limit for the automated ammonia analysis using the phenate procedure was 0.010 mg.1-1. Estimated precision was 0.005 mg.l-1.With each batch of field samples,two duplicates,two standards and two spiked samples were delivered to the lab. The identity of these six quality control samples in each batch of 40 samples was not revealed to laboratory personnel until an annual QA/QC review. 4.Fishery analysis Analysis of the fishery population data was designed to be dependent upon the results of the post construction water quality monitoring.However,the statistical tests to be used were decided at the start of the project. The NYSDEC has ten years (as of 1988)of detailed records of the numbers,sizes and species of fish entering the fish ladder at the Cayuga Inlet. Our analysis of potential impacts of ammonia toxicity from the new lake outfall was designed to use this historical data base,as the long term record could help filter out the year-to-year variability inherent in the biological data.The evaluations were designed to test two null hypotheses: (1)the age (size)structure of the rainbow trout population entering the fish ladder has not changed before and after the new lake outfall became operational (Mann-Whitney test for equal population median,<*=0.05),and (2)the number of rainbow trout has not changed significantly before and after the new lake outfall became operational (does the post construction estimator from the mark-recapture studies lie within two standard deviations of the pre-construction estimator). 12 RESULTS 1.Atmospheric Monitoring Daily and monthly reports of conditions measured at the atmospheric monitoring station were prepared by the Northeast Regional Climate Center. Examples of the monthly summaries and the daily reports are presented in Appendix C.The complete data set is on file at the Northeast Regional Climate Center at Cornell University,at the Ithaca Area Wastewater Treatment Facility, and at the office of the project manager,1812 Route 20 West,Cazenovia NY 13035. Summary analyses of wind speed (Figure 6),air temperature (Figure 7)and precipitation (Figure 8)were performed to provide insight into the mean and standard deviation of each type of atmospheric data.The weather conditions during each sampling event were recorded and used to analyze the effects of forcing functions (such as wind speed and direction )on the observed patterns of ammonia in the lake. 2.Current Monitoring The data from the current meter study are analyzed in two time periods: winter (November through April)and summer (May through October). Summary tables and plots combining the two data sets have also been prepared.The complete reports are appended (Appendix D). The results indicate that the net movement of water at the lake outfall site tends towards a bimodal distribution (Figure 9).The two directions of strongest net transport include:eastnortheast (towards the sector between 20 and 40 degrees true),and southsouthwest (towards the sector between 170 and 190 degrees true).The arithmetic mean scalar current velocity during the summer deployment was 2.12 cm per second (0.07 ft per second). One question of interest to this study is the probability of occurrence of quiescent lake conditions,periods when the current velocities are low and there is little net transport of wastewater effluent from the outfall site.The summer data indicate that on one occasion during late August and early September,water movements were negligible for a six day period.Total net transport for the six days was 2 km,translating to a current velocity of 0.4 cm/sec 13 12.0 MEAN PRECIPITATION,INCHES 4.0 3.0 2.0 1.0- MAR APR MAY JUNE JULY AUG SEPT OCT NOV FIGURE 8.PRECIPITATION AT CAYUGA INLET MONITORING STATIOI 1985-1989 Pg. 16 Figure 9.Net water movement at lake outfall site. (0.0126 ft/sec).Therefore,we can conclude that quiescent conditions do develop at the lake outfall site. There are other scale factors influencing water movement in the south end of the lake.Based on continual water temperature recording at the current meter site,incursions of deeper (colder)lake water occur on a periodic basis.The net result of the incursions is to flush the Southern bay of the lake.The flushing provides additional dilution and transport of the effluent plume away from the outfall site,In addition to the large scale movement of water associated with the incursions of deeper lake water,there is a diurnal periodicity in current velocity and direction at the outfall site.Consistent decreases in current velocity occur close to midnight,reflecting the predictable decrease in night wind velocity. 3.Water Quality (a)Water temperature The water temperature data collected during the April through November scheduled monitoring are presented in Table 1.A typical pattern of temperature flux at Station 3 (the lake outfall site)is graphed in Figure 10 . (b)Secchi Disk Transparency Secchi disk transparency (SDT)provides an index to light penetration through the lake water column.Inorganic particulates (such as sediment particles)and organic particulates (such as algae cells)decrease light penetration.Therefore,the SDT can serve as an indicator of the amount of inorganic and organic turbidity in water.Summary statistics of SDT (Table 2 ) and a typical pattern of SDT over the monitoring period (Figure 11)are presented. (c)pH Summary statistics of pH in Cayuga Lake at the seventeen monitoring stations (Table 3 )and a graph of a typical pattern of pH change over the monitoring season (Figure 12)are presented.As pH is measured on a 17 Table 1.Water Temperature Values at 17 Cayuga Lake Stations Station Mean Temp.Maximum Temp.Minimum Temp 1 15 52 25.5 6 2 15.33 25.8 4.2 3 15.9 26 6 4 15.27 25.5 5.8 5 15.73 26.5 5 6 15.43 25 6 7 16.44 26.5 4.3 8 17.1 27.2 5.5 9 16.03 27 5.5 1 0 15.83 26 5 1 1 15.3 25.5 5.9 12 15.32 26.5 5 1 3 15.26 2 6 5 14 15.52 2 6 6.2 1 5 15.52 26 5.6 16 15.5 25.8 6 1 7 15.75 25.5 5 18 FIGURE 10.STATION 3 WATER TEMPERATURE 41 42 51 61 62 71 72 81 82 91 92 93 94 101 102103104111112 SAMPLING DAY (FIRST APRIL SAMPLING =41) FIGURE 11.STATION 3 SECCHI DISK TRANSPARENCY 19 Table 2.Secchi Disk Transparency Values at 17 Cayuga Lake Stations Station Mean Secchi Disk Tranparency (SDT),m. Maximum SDT (m.) Minimum SDT (m.) 1 1 .7 3.05 0.9 2 2.54 3.66 1.22 3 1.34 2.3 0.46 4 2.05 2.13 1.22 5 1.21 2.13 0.61 6 1.6 2.6 0.61 7 1.13 1.83 0.46 8 0.71 0.91 0.31 9 0.88 1.37 0.61 1 0 0.97 1.52 0.46 1 1 1 .98 3.66 1.07 12 1 .22 2.13 0.46 1 3 2.16 3.66 1.22 1 4 1.53 2.74 0.76 1 5 1.18 2.13 0.61 1 6 1.65 0.76 2.44 1 7 1.82 2.74 1.07 20 Table 3.pH Values at 17 Cayuga Lake Stations Station 1 Mean pH 7.82 Maximum pH Minimum pH 8.9 ....6.85,' 2 8 -8.85-7.05 3 8.097 9 '7.2 ' 4 8.15 7 Q£ \8.8 <7.3 ; A AE EQED 6 /.y o 8.097 y.uo o .y o /8.8 7.05 —7 8.097 8.9 .7.1 '■8 8.22 :8.95 7.35 9 8.22 8.95 7.45 '; 10 7.29 8.95 6.45 11 7.96 8.85 6.85 12 7.66 .8.9 .6.65 13 8.097 8.8 :-7.15 '. 14 8.22 8.85 /X"7.4 .; 15 8.05 9 .-7-3 .16 8.22 '8.85 7.3 17 8.155 r;?.8.8 ;7.15 / --'.—'-■*.■ 21 9.5 9.0 41 42 51 61 62 71 72 81 82 91 92 93 94 101 102 1 03 1 04 111 112 SAMPLING DAY (FIRST SAMPLING APRIL -41) FIGURE 12.STATION 3 pH 22 logarithmic scale,the data were transformed before averaging.The high mid¬ summer values reflect the influence of photosynthesis;as carbon dioxide is removed from lake water by the action of photosynthetic plants,the carbonate/bicarbonate equilibrium system in the lake water shifts towards a predominance of hydroxyl (OH-ions). (d)Dissolved Oxygen The concentrations of dissolved oxygen (DO)were monitored at the Cayuga Lake stations throughout the sampling program.Data are reported as concentrations and percent of theoretical saturation (Table 4).The question of concern was whether low DO concentrations could result from the discharge of treated wastewater to the south end of the lake.The relationship between DO and ammonia is synergistic;the joint toxicity of the two is higher than the sum of the individual toxicities.The only region of low DO detected was the Inlet prior to upgrade and diversion of the wastewater effluent.Figures 13 and 14 illustrate the patterns of dissolved oxygen concentration and percent of saturation at the new lake outfall site. (e)Total Ammonia The concentrations of total ammonia,which includes both the ionized (NH4+)and the un-ionized (NH3)forms are presented in Table 5.Data are tabulated before and after discharge from the rebuilt plant through new lake outfall.The reduction in total ammonia concentrations with completion of the new lake outfall is noteworthy.The reduction in mean Concentrations would have been even more dramatic if our sampling protocol had been designed to assess the impact of the old as well as the new outfall.The sampling grid as designed monitored ammonia as close as possible to the new outfall site,while the closest station to the old outfall site was some 1100 meters distant. Five ammonia concentration isopleths are included for comparable dates before and after discharge through the new lake outfall (Figures 15 -19). These data illustrate the patterns of total ammonia concentration in the lake, and the areal extent of the outfall zones Of influence.The 1986 and 1987 data (before completion of the new facility and discharge through the lake outfall) show the zone of elevated ammonia concentrations clearly centered around the mouth of the Inlet.The 1988 data show that the center of the zone of elevated ammonia corresponds to the new lake outfall. 23 u-.-U.:,. 'LJ "LX .o .LX L?.o ..LJ Table 4.Dissolved Oxygen at 17 Cayuga Lake Stations,Pre and Post New Lake Outfall Discharge Mean Dissolved Oxygen Minimum Dissolved Oxygen Station Pre-discharge Post Discharge Pre-Discharge Post-Discharge mg/l %saturation mg/l %saturation mg/l %saturation mg/l %saturation 1 9.58 99.6 9.67 96.5 5.3 59.3 7.3 72i7 2 9.64 98.7 9.66 9 6 7.9 82.8 7 7 71.6 3 9.35 9 7 9.3 93.6 6.5 69.3 7 4 70.7 4 9.69 99.8 9.61 95.4 7.9 85.7 7.5 76.5 5 9.33 97.3 9.66 96.7 5.6 62 7.3 7 6 6 9.69 100.4 9.48 94.4 6.4 72.1 6.8 74 5 7 9.75 102 9.75 101.6 7.8 75.9 6.9 70.2 8 9.6 103.7 9.64 99.1 7 73 7.4 82.9 "'■.9'L 8.92 90.2 9.26 93.3 4 3 47.7 6.7 72.7 10 8.48 86.9 9.57 96.1 3.5 36.8 6.2 74.9 11 9.74 100.4 9.69 95.9 8.1 81.1 7.5 72.2 1 2 9.57 99.4 9.79 97 3 6 63.1 7 74.7 13 9.47 '■97.3 9.62 95.5 6.2 70.1 7.4 70.5 14 9.55 99.1 9.57 95.4 6.3 63.1 7.1 72.7 15 9.11 94.4 9.6 95.3 5.6 53.3 '7 73.1 16 9.69 101 .1 9 61 95.9 7.4 84 7.5 74.5 17 9.52 97.7 9.47 95.1 5.8 65.9 7.2 73.7 24 PERCENTSATURATION DISSOLVEDOXYGEN,MG/L 41 42 51 61 62 71 72 81 82 91 92 93 94 101102103104111112 SAMPLING DATE (FIRST APRIL SAMPLING =41) FIGURE 13.STATION 3 DISSOLVED OXYGEN 120 41 42 51 61 62 71 72 81 82 91 92 93 94 101102103104111112 SAMPLING DATE (FIRST APRIL SAMPLING=41) FIGURE 14.STATION 3 PERCENT SATURATION DISSOLVED OXYGEN 25 ' ? Table 5.Total Ammonia at 17 Cayuga Lake Stations,Pre and Post New Lake Outfall Discharge Station Mean Total Ammonia (mg/l) Pre-discharge Post-discharge Max.Total Ammonia(mg/I) Pre-discharge Post-discharge Min.Total Ammonia(mg/I) Pre-discharge Post-discharge 1 0.158 0.063 1.54 0.425 0.01 0.01 2 0.08 0.017 1 .04 0.069 0.01 0.01 3 0.373 0.417 2.64 2.65 0.01 0.01 4 0.065 0.026 0.89 0.142 0.01 0.01 5 0.371 0.48 3.56 0.48 0.01 0.01 6 0.067 0.045 0.55 0.24 0.01 0.01 7 0.128 0.029 1.46 0.129 0.01 0.01 8 0.081 0.025 1 .28 0.112 0.01 0.01 9 0.047 0.039 0.35 0.217 0.01 0.01 1 0 0.733 0.184 3.04 0.61 0.3 0.014 1 1 0.088 0.033 1.54 0.417 0.01 0.01 12 0.338 0.062 1.22 0.22 0.01 0.01 1 3 0.046 0.027 0.19 0.126 0.01 0.01 14 0.133 0.091 0.63 0.49 0.01 0.01 1 5 0.522 0.071 3.47 0.54 0.01 0.01 16 0.112 0.057 0.65 0.33 0.01 0.01 1 7 0.124 0.149 0.55 0.82 0.01 0.01 26 Pg. 27 Pg. 30 (f)Un-ionized Ammonia Un-ionized ammonia concentrations,of particular concern to this study,are presented in Table 6 .The mean values before and after completion of the Ithaca Area Wastewater Treatment Facility reflect the overall trends in loading to Cayuga Lake.Again,the extent of the impact of the Cayuga Inlet outfall was almost certainly underestimated due to the sampling design. While the mean and extreme concentrations can provide valuable insights into the overall water quality conditions in the south end of Cayuga Lake,the number of violations of water quality criteria and standards for un-ionized ammonia is of most importance.Table 7 presents the number of violations of three different standards for ammonia in natural waters at each of the seventeen sampling stations.The standards are :(1)0.05 mg/l un-ionized ammonia, which was agreed to during negotiations for our project workplan,(2)the federal acute toxicity criteria,which is the proposed New York State standard, varying with pH and temperature and (3)the federal chronic toxicity criteria, proposed as the New York State standard,varying with pH and temperature. The relationship between un-iohized ammonia concentration and the three toxicity standards at the new outfall site (Station 3)is graphed in Figure 20.This station,located directly above the diffuser,is within the negotiated mixing zone for Cayuga Lake.Nevertheless,there were no detected concentrations of un¬ ionized ammonia exceeding the agreed-upon standard of 0.05 mg/l. The complete data set for all monitoring years is on file (paper and computer disks)at the office of the project manager,1812 Route 20 West,Cazenovia NY 13035.The results of the 1988 monitoring year (post-construction)are included in Appendix E. 4.Fishery Performance of the analysis of the Cayuga Lake fishery was contingent upon measured violations of the 0.05 mg/l un-ionized ammonia beyond the acceptable mixing zone Surrounding the lake outfall.There was no evidence of violation of the ammonia criteria.Therefore,no analysis of changes in population density or age structure of the Cayuga Lake fishery was performed. 32 Table 6.Un-ionized Ammonia (NH3)at 17 Cayuga Lake Stations,Pre and Post New Lake Outfall Discharge Station Mean Un-ionized Ammonia (rg/l) Pre-discharge Post-discharge Max.Un-ionized Ammonia(mg/I Pre-discharge Post-discharge Min.Un-ionized Ammonia(mg/I) Pre-discharge Post-discharge 1 0.009 0.003 0.13 0.013 0 0 2 0.003 0.001 0.028 0.01 0 0 3 0.013 0.012 0.061 0.053 0 0 4 0.003 0.002 0.03 0.008 0 0 5 0.012 0.005 0.039 0.03 0 0 6 0.004 0.003 0.015 0.011 0 0 7 0.006 0.003 0.069 0.019 0 0 8 0.004 0.002 0.032 0.012 0 0 9 0.003 0.003 0.014 0.024 0 0 1 0 0.031 0.013 0.146 0.075 0 0.001 1 1 0.006 0.002 0.13 0.011 0 0 12 0.017 0.006 0.144 0.042 0.001 0 1 3 0.003 0.002 0.028 0.012 0 0 1 4 0.007 0.005 0.062 0.03 0 0 15 0.021 0.006 0.117 0.097 0 0 16 0.005 0.003 0.03 0.02 .0 0 1 7 0.007 0.008 0.033 0.048 0.001 0 33 TABLE 7.AMMONIA STANDARD VIOLATIONS,PRE AND POST OUTFALL NUMBER OF STANDARD VIOLATIONS Station Standard=0.05 mg/l New Acute Toxicity Standard New Chronic Toxicity Standard Pre Post Pre Post Pre Post 1 1 0 0 0 4 0 2 0 0 0 0 0 0 3 1 0 0 0 5 3 4 0 0 0 0 1 0 5 0 0 0 0 2 0 6 0 0 0 0 0 0 7 1 0 ,0 0 3 0 8 0 0 0 0 1 0 9 0 0 0 0 0 0 1 0 11 0 0 0 1 1 2 11 1 0 0 0 1 0 1 2 4 0 0 0 7 0 1 3 0 0 0 0 0 0 1 4 1 0 0 0 1 0 1 5 3 0 0 0 1 0 1 1 6 0 0 0 0 1 0 1 7 0 0 0 0 0 3 SUM 23 0 0 0 45 9 SAMPLES 952 661 952 661 952 661 PERCENT 2.42%0%0%0%4.70%1.50% 34 OH 0.3 0 .1 .JLLxaU0.0 j J)05 mg/l 0.2 Un-ionized ammonia N,mg/l a CHRONSTD *RCUTESTD TUNIS 100 200 300 400 DATE Figure 20.Relationship between un-ionized ammonia at Station 3 (lake outfall site) and three toxicity standards 35 DISCUSSION I.Which factors influence the concentration of ammonia at the lake outfall? The volume of treated wastewater discharged through the outfall ,and the concentration of ammonia nitrogen in the wastewater combine to determine the load of ammonia to the south basin of the lake. The load of ammonia is diluted by the lake water.Dilution is influenced by the lake level (which determines the water depth at the outfall site)and by the design of the outfall diffuser (which determines the effective volume over which the effluent is distributed). Dispersion and advection determine the extent to which wastewater moves away from the outfall site.Dispersion is a process of movement in a random direction,while advection is a process of movement in a particular direction. The dispersion process is governed by a coefficient,derived from Fick's Law of diffusion,and a scalar length over which dispersion will occur.Advection depends on the strength and direction of lake currents.Lake currents are influenced by the inflow of water from the tributaries,and the velocity and direction of winds. Additionally,biological,chemical and physical processes may alter the concentration of ammonia at the outfall site.The activities of lake phytoplankton, macrophytes,and nitrifying microorganisms will utilize and reduce the water concentration of ammonia.Lake sediments at the outfall site will adsorb ammonia,to an extent determined by their cation exchange capacity,and percentage organic matter. 2.Can the observed patterns of ammonia concentration be adequately described by a dispersion model? As described in the introduction,several attempts to model ammonia concentrations surrounding the lake outfall were made prior to construction of the Ithaca Area Wastewater Treatment Facility.The model used by the EPA and their consultants considered dispersion and decay of ammonia to be the most significant processes governing the attenuation of ammonia at the lake outfall site.Concentrations of ammonia at a distance x from the outfall were described by the following equation (DiToro,D.M.1972.Line Source Distributions in Two 36 Dimensions:Applications to Water Quality.Water Resources Research.2:1541- 1546): cx =W/2kHE *Ko {(k/E)1/2 x}. where cx =concentration of total ammonia (mg/l)at distance x (m)from the outfall W =load of ammonia,g per day « H =water depth at the outfall site (m) E =horizontal dispersion coefficient (m2/day) Ko =modified Bessel function of the second kind k =ammonia loss rate,day-1 x =distance from lake outfall,meters In theory,this equation predicts the gradient in concentrations of ammonia under critical conditions of low stream flow and minimal wind velocity; conditions under which the assumption of no advective transport would be most appropriate.E,the horizontal dispersion coefficient ,is empirically derived from the scale length of diffusion (L).The EPA and their consultants considered L to reflect the effective horizontal mixing zone of Cayuga Lake (6000 ft.). How well the equation predicts the actual concentrations of ammonia in the lake can be evaluated.Figure 21 depicts the predicted and observed patterns of ammonia in Cayuga Lake surrounding the outfall during a period of low stream flow (flows approximately 3.4 times the MAjCDiq),low antecedent rainfall and and typical wind velocity and direction (September 7,1988).The graph indicates that the decay of ammonia is reasonably well predicted using the range in value of decay coefficients previously chosen for the analysis (k = 0.01 day-1,k =0.05 day-1 and k =0.1 day-1).The initial decay follows the pattern predicted using the lower decay coefficients;with increasing distance from the outfall,the decay is more rapid than predicted.This is consistent with some advective transport occuring at the outfall site. Figure 22 represents the predicted and observed ammonia data for October 5,1988 (influent streams at approximately 2.3 times MA7CD10).Initially,the concentration of ammonia is higher than predicted.With increasing distance from the outfall,the ammonia concentration decreases rapidly.This suggests that even under low tributary inflow conditions,some advective transport did carry away wastewater effluent from the outfall site. 37 Figure 21.Predicted and observed ammonia attenuation with distance from lake outfall Sept.7,1988 Flow 4.64 MGD k=0.01 o-k=0.05 k=0.1 observed 38 39 J. The dispersion model appears to be a conservative predictor of ammonia j concentrations in the south end of Cayuga Lake.The conservative nature of the model is appropriate,for the current study clearly indicated the potential for quiescent conditions to develop.The data presented reflect conditions reasonably close to MA7CD1Q flows in the tributaries to the south end of the lake.Therefore,the predicted extent of ammonia toxicity surrounding the J Cayuga Lake outfall is well within an acceptable mixing zone. 3.Can we predict the concentration of ammonia at the outfall site from loading and environmental factors? Using the technique of regression analysis,we can determine whether there is a predictable,consistent effect of load and environmental factors on the concentration of ammonia at the lake outfall site.The impacts of different combinations of wastewater loading and environmental factors can then be J projected. The 1988 data were subjected to multiple regression analysis.The dependent variable (the variable to be predicted)was the concentration of total ammonia at the lake outfall site (station 3).Predictor variables tested included: wastewater load,streamflow,secchi disk transparency (SDT),pH,and water temperature.The results of the analysis are presented below (Table 8). J 40 j .....- '' <'V.'< Table 8.Results of regression analysis of 1988 lake data. Dependent variable:Total ammonia nitrogen at lake outfall site N:38 Multiple r:0.846 Squared multiple r:0.716 variable coefficient std error t P (2 tail)* Load 0.001 0.000 3.788 0.001 SDT 0.169 0.036 4.707 0.000 Temp -0.042 0.009 -4.752 0.000 Variables found not important: Tributary flow -0.000 0.000 -0.054 0.957 pH -0.004 0.018 -0.199 0.844 *p is the probability that any reduction in error of the predictive relationship from inclusion of this variable is due to chance. The regression analysis indicates that wastewater load is a strong predictor of ammonia concentration at the outfall site,an intuitive result.Higher wastewater loads will result in higher concentrations of ammonia at the outfall site.Secchi disk transparency (SDT)is also related to ammonia concentration at the outfall site;higher secchi disk transparencies are associated with higher ammonia concentrations.This result suggests an important role for lake phytoplankton in assimilating ammonia,as greater densities of phytoplankton lower lake transparency.Water temperature is inversely related to ammonia concentration (as indicated by the negative coefficient in the regression).This result may reflect both physical and biological processes acting on ammonia at the outfall site.As water temperatures increase,the volatilization loss of ammonia to the atmosphere increases,leading to lower concentrations in the water.Biological activity also increases with temperature,leading to greater biological assimilation of ammonia and consequent lower water concentrations. The lack of a relationship between tributary flow and ammonia concentration at the outfall site was surprising.In theory,high tributary inputs would act to dilute and carry away the wastewater effluent.Concentrations 41 would thus be higher during periods of low tributary influx.This was not seen in the 1988 data base.It is possible that adequate dilution and water movementJoccurduringmostflowregimesinthetributaries,and the differences between high and low flows cannot be detected within the limitations of the analytical technique for ammonia.pH was also found to not contribute to reducing the error in the regression analysis.Higher pH values would theoretically increase j the rate of ammonia volatilization,as more of the ammonia is in the gaseous form.Elevated pH levels often reflect a high photosynthesis levels;conditions under which the expected loss of ammonia would also be high. The reSults of the regression analysis can be used to predict ammonia concentrations at the lake outfall site under various combinations of loading and environmental conditions.Table 9 details the results of a "worst case"type of analysis,where the wastewater load is high (higher than evidenced during our sampling efforts)and the worst combination of water temperature and secchi 3 disk prevails.Results indicate that un-ionized ammonia concentrations at the outfall site may at times exceed 0.05 mg/l,even though no violations of this standard were detected during the 1988 monitoring effort.However,the concentrations of ammonia are projected to rapidly decrease away from the outfall site.Even under the worst case scenarios,there will be no extensive-plume of toxic ammonia concentrations in the south end of Cayuga Lake. J- 42 Table 9.Predicted "worst case”ammonia concentrations MONTH Highest Load Max .SDT Min.Temp (degrees C) Predicted Total ammonia (mg/l) Highest pH Highest Water temp Predicted un-ionized ammonia "worst case"(mg NH3-N/I)(ppd)(ft) at outfall at 100 m. APRIL 1250 6.5 7.9 2.02 8.15 10.5 0.054 0.012 MAY 1250 4.5 12.8 1.47 8.5 19.5 0.154 0.044 JUNE 470 4.5 20 0.39 8.75 24.5 0.09 0.048 JULY 470 4 2 1 0.26 8.55 2 6 0.046 0.036 AJ3 470 6 18 0.73 8.55 23.5 0.1 1 0.032 SEPT 626 6 12 1.14 8.5 19 0.069 0.012 OCT 1250 7.5 9.5 2.12 8.25 16.5 0.108 0.020 NO/1250 7 6 2.18 7.85 10 0.028 0.004 Notes:(1)Flows are assumed to be 10 MGD except during summer months of June,July and August,when flows are assumed to be 7.5 MGD. The 1988 flow records support the conservative nature of these assumptions (2)Ammmonia nitrogen concentrations are assumed to be 15 mg/l during October through May,and 7 mg/l during June through September, when there is at least partial nitrification in the WWTF. Again,the 1988 data support the conservative nature of these assumptions (3)The percentage of total ammonia-N In the un-lonized fraction is calculated using pH and temperature In the following manner: pKa =(-0.032*temp)+10.05.Percent un-ionized =100/1+antilog (pKa-pH) (4)The calculation of total ammonia as a function of load,minimum Water temperature and maximum pH is derived from the multiple regression between the variables reported in Table 8.Specifically,total ammonia at the outfall site =(0.001‘Load)+(0.169*SDT)-(0.042*Temp) 43 APPENDIX A PROJECT SCOPE AND wb^KPLAN 27 May,1986 Scope of Work ;,Cayuga Lake Menitoring Study Cbjective of Study: Hie Cayuga Lake Water Quality Study is designed to ascertain whether the anmonia in the effluent of the Ithaca Wastewater Treatment Plant,currently under construction (Project C-36-1095-03)will adversely affect the fishery j of Chyuga Lake.Ihe City of Ithaca,Town of Ithaca and Town of Dryden are Upgrading their Wastewater Treatment Plant and moving the site of the outfall from the Inlet to the South end of the lake.Our concern is with the need for further treatment (nitrification)of the wastestream in order to avoid toxic concentrations of ammonia at and around the new outfall.Hie Southern end of Cayuga Lake supports a warm water fishery,and is used for passage of J fishes spawning in the Inlet and other tributaries.We are gathering data on the water quality (ammonia,pH,dissolved oxygen arid temperature)and the weather (wind speed and direction,temperature arid precipitation)and the currents in the South end of Cayuga Lake.In addition,we are analyzing the New York State DEC records of fish passage in Cayuga Inlet. Study -Design: We propose to conduct this study in a series of phases,with the results of each phase directly influencing the research design of the Phase I:Preliminary water quality monitoring of Cayuga Lake. (2 October -1 Novenber,1984) Objectives of Phase I: J 1)Assess background levels of pH,Dissolved Oxygen (DO),and temperature in the region of the proposed Outfall. 2)Evaluate the diurnal patterns of pH,DO,and temperature to help define critical periods for the full-scale water qual¬ ity monitoring (Phase II). !3)Evaluate precision and accuracy of sampling and analytical -techniques. 4)Provide training for the water quality monitoring crew in station location and sample handling. 5)Evaluate feasibility of detecting waste-miter plumy f ran the » Cayuga Heights Wastewater Treatment Plant. Research Design of Phase I: >Sairpling period:5 sampling trips between 2 Oct.and 1 Nov.,1984 . Scheduling will depend on the weather. Sampling stations:We have established a grid of 17 stations in the Southern end of Cayuga Lake (Figure 1).The stations v.v re ciiosen by several criteria: CAYUGA LAKE MONITORING STUDY : SCOPE OF WORK MAY 27,1986 .Page 2 ’ a)distance frcm proposed outfall site b)direction frcm proposed outfall site c)feasibility of location using metric bearings frcm established landmarks (e.g.lighthouses) d)known point source (e.g.Wastewater Treatment Plant) e)known nonpoint source (e.g.tributary such as Fall Creek). The stations are classified into three zones: Zone 1:greater than 500m from the outfall site stations 11,2,13,6,8,9 and 12 Zone 2:250-500m frcm outfall site stations 1,4,7,10 and 17 Zone 3:0-25Gm from outfa-1 site Stations 15,14,5,16 and 3 Each station is sampled at two depths,below surface and ^m above bottcm.This will help us detect any plume of water of a different temperature (and density)frcm a point source or frcm a tributary. (The sole exception is station 8,which is in a region of shallow water,and is sampled at mid-depth.) Sampling frequency:On 2 of the sampling trips,we will visit each of the stations,between 10 A.M.and 2 P.M. On 2 of the sampling trips,we will conduct diurnal sampling,visit¬ ing stations 11,1,3 and 6 at daybreak,mid-morning,noon,mid-after¬ noon and after sunset. Sampling device:A Van Dorn sanpier,on a cable. Parameters to study:Chemical:pH,DO each station,each trip. Total anmonia,on 1 of the trips during which we vist each station during mid-day.Physical:stream flows,lake level,precipitation, water temperature,air temperature,wind speed and direction,secchi disk transparency. Data analysis:1)The precision and accuracy of the total ammonia determinations will be checked by submitting replicate,: Split and spiked samples.. 2)The data from the diurnal samplings will be used to pinpoint best sampling times for the full-scale study. 3)Most critical periods for anmonia (NH3)will be calculated frcm the pH and tenperature data. Phase II:Full-scale monitoring of Cayuga Lake (April,1985 -NOvenber,1988) Objectives of Phase II: 1)Expand the data base for pH,DO,tenperature,total ammonia and un-ionized ammonia at the Southern end of Cayuga Lake. CAYUGA LAKE MONITORING STUDY SCOPE OF WORK ?MAY 27,1986 '\’I Page 3 ' 2)Once the IAWWTP begins discharging to the lake,define the size and extent of any plume of ammonia detected. 3)Correlate the size and extent of any plume of ammonia with stream flow,lake level and weather conditions. Research Design of Phase II: .Sampling.Period:Before startup of facility:April,1985 -November,1985,April,1986 -November,1986.After startup of facility:April,1987 -November,1988. Sampling frequency:April -August 2x monthly Septenber,October lx weekly November 2x monthly Notes: a)September and October have more frequent sampling because we expect this time of the year to be most likely to experience critical water quality conditions.The lake water is warm and photosynthesis remains high.Returning students place a sudden increase in load to the Wastewater Treatment Plant. Streamflow is likely to be low early in September,and dilution may be minimal. If conditions in September appear critical (warm,dry weather) we will schedule extra sampling runs at daybreak and at sunset. b)Sampling trips are made in the afternoons (12 Noon -5 P.M.),when conditions are optimal for elevated NH3 levels (high pH from photosynthesis,high water temperature).; Sampling stations:Full grid of 17 stations. Sampling depths (2):Top,(hm.below surface),bottom,Gjn.abovebottom), Sampling device:A Van Dorn sampler,on a cable. Parameters to study:Chemical:pH,DO,total ammonia,total alkalinity.Physical:stream flows,lake level,precipitation,,. water temperature,air temperature,wind speed and direction, secchi disk transparency,lake current (speed and direction), IAWWTP performance.' Data analysis:1)Calculate NH3 fraction of total ammonia,using nomographs of pH and temperature. 2)Compile all available data on ammonia concent¬ ration,-pH,temperature,lake level and stream flow conditions,lake currents and weather condi¬ tions.From the complete data set,estimate the '-\,■\../...\.'I.--- 'k - CAYUGA LAKE MCNITORING STUDY .3 ' ‘/L SCOPE OF WORK '";'/''L MAY 27,1986 .V V-.-Page 4 A 2)(continued) dilution capacity at the Outfall Site.Project the size of the mixing zone and/or plume of un¬ ionized ammonia from the IAWWTP at various condi-1 tions..J". Decision rules:1)Concentration of Ammonia : The "toxic plume'"of ammonia is defined as the area where the un-ionized ammonia concentration is greater than 0.05 mg per liter. 2)Areal Extent of Ammonia ! If ,by sampling and/or modeling of low flow,high temperature and high pH conditions in Cayuga Lake, a toxic plume of ammonia is detected at a distance greater than 500m.from the Outfall,we shall con¬ sider this a potentially serious impact on the Cayuga Lake fishery,j 3)Ecological impact ' If critical water quality conditions (that is,a toxic plume greater than 500 m.in diameter)are detected or predicted.with assurance,than we shall turn to the fishery assessment (Phase III)to eval¬ uate the ecological impact of the poor water quality. -</',.i .... Phase III:Fish population data analysis.Fall 1987 -Spring 1988 and Fall 1988. Objective of Phase III:.| /-..?'/:/I.. To evaluate the effect of the ammonia plume and/or mixing zone on the Cayuga Lake fishery.i Research Design of Phase III:j The New York State Department of Environmental Conservation (DEC)has 8 years of detailed records on fish passage through the Cayuga InletandonfishpopulationsintheScuthemendofCayugaLake,as of 1984. Vfe propose to take advantage of the historical data on the lake fishery, recognizing that year to year variability would otherwise hinder our attempts to make any conclusions based on a single year of data.Since fish are able to detect and,if at all possible,to avoid regions of poor water quality,we maintain that the true impact of the IAWWTP discharge cannot be evaluated by enumerating fish in the vicinity of the Cutfall.Rather,the number and size of fish entering the fish ladder will serve as an index of the water quality to which they are exposed;and as an indicator of any blockage to fish passage. Sampling Period:Fall 1987 -Spring 1988 and Fall 1988 Sampling Station:Fish ladder,Cayuga inlet. Parameters to study:Wb shall evaluate both the age structure and the size of the population of rainbow trout. CAYUGA LAKE MONITORING STUDY ' SCOPE OF WORK MAY 27,1986 Page 5 Data Analysis:1)We shall use the NYDEC data on the number and sizes of rainbow trout entering the fish ladder to evaluate whether the age (size)structure of the rainbow trout population has changed after the IAWWTP begins discharging to Cayuga Lake. The statistical test will be the non-parametric Mann-Whitney test.We shall test at thec\=0.05 level for equality of:location,(that is,has the population median Changed?). 2)We shall use the NYDEC population estimates for' :rainbow trout based on mark-recapture data in Cayuga Inlet to ascertain weather the size of the population of trout has changed after the IAWWTP begins discharging to Cayuga Lake.Statistical tests will be whether the post-construction popu¬ lation estimator lies within two standard devia¬ tions of the long term population estimate. Decision Rules:The IAWWTP effluent will be considered to have a serious impact on the Cayuga Lake fishery if the following conditions are met: 1)A toxic plume of ammonia is detected or predicted to occur at a distance greater than 500 m.from the Plant Outfall,and 2)The numbers of rainbow trout entering the Cayuga Inlet fish ladder are significantly reduced;or, the age (size)of rainbow trout has changed signi¬ ficantly. APPENDIX B FIELD DATA SHEETS:WATER QUALITY STUDY .LAKE MONITORING DATA SHEET Date:/ /8 Time Air Temp.(°C)-.,Cloud cover _% Station depth (m)‘S.D.T.(m) Ttemp.(°C)T ,.___DO (ppm)T .:<pH T _ B '_._ .B .-;B Bottle numbers T -B ,■ Station depth (m)S.D.T.(m)- Temp.(°C)T ,.___DO (ppm)T .'pH T _ B .B____.__B Bottle numbers T B Station depth (m)\,S.D.T.(m) Temp.(°C)T .DO (ppm)T __-.pH T _ .B "B ___B Bottle nuntoers T B . ' Station depth (m)S.D.T.(m) Ttemp.(°C)T .DO (ppm)T _________pH T B_____.__B_____._B Bottle numbers T B Station depth (m)S.D.T.(m) Tenp.(°C)T .DO (ppm)T pH T B ,B }B__ Bottle numbers T ,B - Station depth (m)' .S.D.T.(m) Tenp.(°C)T .DO (ppm)T .pH T B .-<B B Bottle numbers T B /-"C,’/I ;U 0...V SAMPLE ROUTING SHEET Bottle Date Date Date nh3 Bottle Number Collected Station Depth NHt Added Submitted Results Cone.Pick-up TABLE 6 CHAIN OF CUSTODY -SAMPLE BOTTLES Cayuga Lake Monitoring Project Bottle numbers:() Cleaned by: Filled by:date Received in laboratory:date Picked up from laboratory:date LAKE MONITORING STUDY Data Surmary Sheet Date Time Station Depth Temp DO %Sat.pH AMMONIA TOTAL %nh3 - APPENDIX C EXAMPLES OF ATMOSPHERIC MONITORING DATA HIND ROSE DOTHFORCRYUGALAKEINLET1985 RNNURL Total length oF each barb Is proportional to percent oF Ilea wind blows Fro*that direction.Length oF straight line Is proportional to nusber oF hours with wind speeds oF 1 to 5 sph|ho 1 1 ow box —5 to ID sph;rilled box “over 10 sph.R^ WIND ROSE DATAFORCAYUGALAKEINLET1986 ANNUAL Total length of each barb Is proportional io percent of i Length oF el eight line Ie proportional to nunbor oF hour holloa box -5 io 10 eph>Filled box -over 10 eph.Re'7,. no wind blows From that direction, with wind speode oF 1 io 5 «ph| Total length oF each barb Is proportional to percent of tlse wind blows Free that direction.Length oF straight lino Is proportional to number oF hours with wind speeds oF 1 to 5 mphiknifesbns—S to ID «ohl Filled box “over 10 ooh.ReFerenco of rales drawn at b.111.and 2 Ci ‘L . WIND ROSE DATAFORCAYUGALAKEINLET1988 Total length of each barb Io proportional to porcontLengthofstraightlineIeproportionaltonusborofhollowbox~5 to 10 sph;rilled box ~over 10 Mph. of t 1 ee w 1 nd b 1 owe from thathourswithwindspeedsof1 Ref ®rune «a r c s u »'r u e,r>uI d I root i on.to 5 mp hj Ave Monthly Windspeed JAN FEB MAR APR MAY JUN JULY AUG SEP OCT NOV DEC 1985 7 6 7.0 7.1 7.5 8.1 8.9 8 4 1986 9.5 9.4 8.9 8.8 9.5 8.2 6.6 7.5 7.7 7.9 9.1 8.3 v 1987 9.0 9.8 9.4 9.4 8.1 6.9 6.2 7.4 5.8 8.6 9.9 9.4 1988 9 8 9.7 10.4 9.9 7.4 8.1 6.1 7.0 7.5 MEAN 9.4 9.6 9.6 9.4 8.3 7 7 6.5 7.3 7.1 8.2 9.3 SD 0.40 0.21 0.76 0.55 1.07 0.59 0.41 0.24 0.89 0.36 0.53 0.61 1985 June -9 missing days July -9 missing days Sep-1 missing day Oct -1 missing day Dec -1 missing day 1986 Jan -2 missing days Mar -3 missing days May -16 missing days Jun -1 missing day Nov -3 missing days 1987 May -2 missing days Jun -5 missing days Jul -1 missing day Aug -7 missing days Sep -2 missing days Oct -2 missing days Nov-1 missing day 1988 Jan -2 missing days May -3 missing days Sep -2 missing days monthly average temps JAN FEB MAR APR MAY JUN JULY AUG SEP OCT NOV DEC 1985 47.9 58.0 59.7 69.7 68.7 63.8 52.5 43.3 27 5 1986 26.8 26.1 37.5 47.3 59.9 64.1 70.0 673 61.7 50.8 38.7 33'9 1987 25.5 23.9 36.7 48.8 58 2 67.8 72.5 68.3 62.1 48.2 41.9 34.1 1988 24.6 26.6 35 7 45.0 57.1 63.9 72.8 71.7 61.0 MEAN SD 25.6 1.11 25.5 1.44 36 6 0.90 47.3 1.62 58 3 1.17 63 9 3.31 71.3 1.63 69.0 1.89 62.2 1.19 50.5 2.17 41.3 2.36 31.8 3.75 1985 April -from back up instruments May -from back up instruments -2 missing days June -7 days estimated -2 missing days July -9 missing days Sep-1 missing day Oct -1 missing day Dec -1 missing day 1986 Jan -2 missing days Mar -3 days estimated May -6 days estimated Jun -1 missing day Nov -3 missing days 1987 May -2 missing days Jun -5 missing days Jul-1 missing day Aug -7 missing days Sep -2 missing days Oct -2 missing days Nov -1 missing day 1988 Jan -2 missing days May -3 missing days Sep -2 missing days Precipitation Totals JAN FEB MAR APR MAY JUN JULY AUG SEP OCT NOV DEC 1985 1.59 1.94 2.19 2.19 1.53 3.37 2.30 5.19 1986 3.73 1.64 3.60 5.00 3.02 254 2-30 1.60 1987 1.06 1.90 0.66 2.36 3.78 2.48 3.12 2.56 0.32 1988 2.12 2.56 1.24 4.00 3.20 1.62 MEAN 1.06 2.34 1.70 2.35 3.74 2.56 2.66 2.39 2.37 1985 April -from back up instruments May -from back up instruments -2 missing days June -7 days estimated -2 missing days July -9 missing days Sep-1 missing day Oct -1 missing day 1986 May -6 days estimated Jun -1 missing day Nov -3 missing days 1987 Jun -5 missing days Jul -1 missing day Aug -7 missing days Sep -2 missing days Oct -2 missing days Nov -1 missing day 1988 May -3 missing days Sep -2 missing days Average Monthly Wind Speed (mph)-Ithaca,NY YEAR 1983 1984 1985 1986 1987 1988 MEAN January 7.4 8.4 8.7 7.7 8.9 8.2 February 7.5 8.3 8.2 8.2 7.5 8.7 8.1 March 9.2 9.3 8.8 7.4 8.6 8.7 April 8.2 8.4 8.0 7.7 8.4 8.1 May 7.9 7.3 7.2 7.4 7.2 6.4 7.2 June 5.7 6.7 6.7 7.1 6.3 6.3 6.5 July 6.1 5.6 5.8 5.7 5.1 5.0 5.6 August 4.9 4.9 5.9 6.5 5.8 5.9 5.7September5.7 6.3 6.0 6.8 5.2 6.7 6.1October7.5 5.4 7.1 6.7 7.1 7.4 6.9 November 7.8 9.4 7.9 8.0 8.4 9.2 8.5 December 8.8 8.6 8.1 8.4 8.8 8.5 Annual 7.2 7.2 7.2 7.4 7.0 7.5 7.3 Months with over half of values missing were omitted Prevailing Monthly Wind Direction -Ithaca,NY YEAR .1983 1984 1985 1986 1987 1988 MODEJanuarySENWNWNWSNWFebruaryNWNWSESENWNWNWMarchNWNWNWNWNWNWAprilNWSENWNWNW NW NWMayNWNWNWNWSENWNWJuneSESENWNWSENWNW/SE'.July NW SE SE NW SE SE SEAugustNWSESESESESSESeptemberSESESX:-"SE SE SE SEOctoberSESESESESSESENovemberSESESESESEsSEDecemberNWSESESENWr>'":S.-SE Annual SE SE SE SE X SE NW SE Percent of time the wind blows from the given direction (ANNUAL)-Ithaca,NY YEAR 1983 1984 1985 1986 1987 1988 MEAN Calm 0.4 0.5 0.0 0.1 0.4 0.2 0.3 NE 6.7 6.2 4.9 4.0 6.0 4.2 5.3 E 8.4 6.6 7.4 5.8 7.4 6.5 7.0 SE 26.4 28.0 23.3 28.7 26.3 22.0 25.8 S 11.2 15.2 19.3 15.8 14.9 19.5 16.0 SW 5.3 4.7 6.9 4.2 4.3 5.0 5.1w10.4 9.8 1 0.1 9.4 8.1 9.9 9.6 NW 25.5 24.2 22.0 26.8 24.8 26.4 25.0 N 6.2 5.2 6.1 5.1 8.1 6.6 6.2 Average wind speed when the wind is blowing from the given direction (ANNUAL)-Ithaca,NY YEAR 1983 1984 1985 1986 1987 1988 MEAN-NE 4.0 3.9 4.3 4.1 4.3 4.2 4.1 E 3.4 3.6 4.1 3.6 3.8 3.6 3.7 SE 7.8 7.1 6.6 7.0 6.5 6.9 7.0 S 8.3 8.5 8.1 8.5 8.3 9.0 8.5 SW 5.4 5.3 6.0 5.6 4.8 5.1 5.4 W 8.5 8.5 8.5 8.4 7.3 8.3 8.3 NW 8.6 8.5 8.6 8.9 8.7 8.9 8.7 N 5.2 .5.5 6.3 5.8 7.1 6.3 6.0 Overall 7.2 7.2 7.2 7.4 .7.0 7.5 7.3 VAV A LAKE INLET,I TEMPERATURE THAC A LO H Q W 1 Z Z L! i Cl Hl CL hi 1 Z Z CO T 1i HLY R D : AVE EPORT VEL rl V J._ DIRE AVE OTION: 10/8’ PPT TOTALHIAVS 10/01 !56 5 1.5 43 23 12.3 11.9 278 W 0.10 10/02 !70 ^6.'9 43 29 11.1 10.6 169 s 0.16 10/03 i 53 47.2 42 33 16.6 16.2 309 NW 0.00 10/04 !54 44.9 40 18.7 18.3 281 W 0.00 10/05 5 70 54.0 39 14 7 7 7.4 161 SSE 0.00 10/06 !66 56.3 47 14 6.3 5.8 155 SSE 0.23 10/07 !58 52.3 42 16 5.5 5.1 168 SSE 0.18 10/08 !50 44.9 40 30 8.9 8.4 243 wsw 0.00 10/09 !57 48.4 37 19 3.9 8.5 164 SSE 0.02 10/10 !53 49.0 42 18 9.4 8.8 246 WSW 0.02 10/11 !44 40.5 35 15 7.0 6.5 296 WNW 0.34 10/12 !50 40.8 33 12 5.6 5.3 198 ssw 0.00 10/13 !53 41.0 31 17 6.8 6.5 225 sw 0.00 10/14 !62 44.8 30 12 6.5 6.3 147 SSE 0.00 10/15 !64 -4 36 11 5.6 5.4 196 SSW 0.00 10/16 !71 54.6 40 14 6.6 6.4 154 SSE 0.00 10/17 !69 58.3 49 25 11.0 10.7 161 SSE 0.00 10/IS !57 53.0 47 12 4.6 4.1 197 SSW 0.oo 10/19 !66 52.2 38 10 6.2 6.0 147 SSE 0.00 10/20 !58 54.7 49 16 7.7 7.5 158 SSE 0.06 10/21 ’56 47.3 39 2 2 9.4 8.9 308 NW 0.18 10/22 !53 43.0 33 17 5.8 5.3 204 SSW 0.00 10/23 !60 51.2 44 18 8.1 7.6 174 S 0.00 10/24 !67 53.1 36 26 9.5 9.1 169 S 0.10 10/25 !48 43.3 32 25 9.3 3.7 261 W 0.02 10/26 !56 41.3 28 13 6.4 6.0 161 SSE 0.OO 10/27 !53 47.5 40 25 11.2 10.9 190 S 0.78 10/28 !48 43.2 34 20 8.8 8.6 277 W 0.32 10/29 !45 39.2 32 16 6.5 6.1 184 S 0.00 10/30 !51 43.8 34 20 9.7 9.5 157 SSE 0.00 10/31 !52 45.7 36 19 7.6 7.1 260 W 0.00 71 11 Cd 1 . i tn iii 28 36 1 00 !  1 0- 11 8.2 2.56 NOTES: DATA SUMMARIZED MIDNIGHT-TO-MIDNIGHT (ALWAYS EASTERN STANDARD) TEMPERATURE IS IN DEGREES F,WIND SPEED IS IN MILES -PER -HOUR, WIND DIRECTION IS IN DEGREES,PRECIPITATION IS IN INCHES. THERE WERE O MISSING OR BAD VALUES AN ASTERISK FOLLOWS DAILY FIELDS WHICH INCLUDE MISSING OR BAD VALUES CAYUGA LAKE INLET,ITHACA DAILY REPORT '10/01/87 TEMPERATURE WIND:PPT SPEED:VEL DIRECTION: HI AVE LO !1 -L 1 1—i 1 AVE AVE AVE S'TDV TOTAL 01:00 !54 53.S 53 9 11 a- 11 tb Il 5.2 1l1 03 1 CU i WNW 37 t1 O 11 O 1 O 111u 02:00 !54 53.1 51 20 10.2 q q 314 NW 14 0.04 ! 03:00 ’52 51.2 51 13 S.2 S.1 309 NW 12 0.02 ! 04:00 ’52 52.0 52 15 12.0 11.S 301 WNW 11 0.00 ! 05:00 1 52 51.S 51 17 14.1 14.0 312 NW 7 0.02 ! 06:00 !53 52.3 51 19 14.6 14.0 330 NNW 17 0.00 ! 07:00 !52 51.S 51 IS 14.0 13.8 316 NW 9 0.00 ! OS:00 !54 52.0 51 22 18.0 17.8 318 NW 9 0.00 ! 09:00 !54 53.0 52 25 19.6 19.3 344 NNW 10 0.00 ! 10:00 !54 52.S 52 24 IS.3 16.6 331 NNW 25 0.00 ! 11:00 !55 53.5 52 24 18.0 17.6 327 NNW 12 0.00 ! 12:00 !54 52.3 51 28 17.5 16.9 316 NW 15 o:02 ! 13:00 !55 54.0 51 24 18.9 13.6 321 NW 10 0.00 ! 14:00 !56 55.3 54 22 16.3 15.5 329 NNW 18 0.00 ! 15:00 !56 55.6 55 21 16.3 16.0 332 NNW 10 0.00 ! 16:00 !56 55.9 55 19 14.1 13.9 329 NNW 9 0.00 ! 17:00 !56 56.0 56 15 9.5 9.3 314 NW 12 0.00 ! IS:00 !56 52.9 50 7 4.6 4.1 269 W 26 0.00 ! 19:00 !51 49.9 48 6 4.3 3.7 222 SW 29 0.00 ! 20:00 !48 47.6 47 10 7.0 6.8 150 SSE 14 0.00 ! 21:00 !47 46.2 45 10 8.4 8.3 149 SSE 9 0.00 ! 22:00 !46 44.5 44 11 9.3 9.2 142 SE 9 0.00 ! 23:00 !45 44.5 44 10 8.3 8.1 144 SE 9 0.00 ! 24:00 !45 i Cd I . 11 T 111i 43 8 6.6 6.5 160 SSE 12 0.00 ! 56 51.5 43 28 12.3 11.9 0.10 NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY ****** CAYUGA LAKE INLET ITHACA DAILY REPORT 10/02/87 TEMPERATURE:WIND: SPEED:VEL AVE DIRECTION AVE STDV PPT TOTALHIAVELDHIAVE 01:00 !46 44.3 43 8 1 Ui iI 03 1111 Ui J  1 UI i1 178 3 19 0.00 02:00 !47 46.2 45 TO 7.9 7.8 167 SSE 12,0,00 03:00 !49 47.6 47 15 8.6 8.2 1 SSE 17 0.oo 04:00 J 50 49.7 49 17 14.3 14.0 '140 SE 11 0.00 05:00 !51 50.1 50 16 12.1 11.9 127 SE 10 0.00 06:00 !51 50.3 50 15 11.5 11.3 131 SE 12 0.00 07:00 !52 50.9 50 19 14.9 14.6 140 SE 11 0.00 08:00 !56 53.7 52 20 17.2 16.9 150 hSE IT 0.00 09:00 !59 57.1 56 23 17.8 17.3 167 SSE 13 0.00 TO:00 !62 59.9 58 29 20.9 20.2 163 SSE 15 0.00 11:00 !65 63.4 61 28 19.9 19.3 161 SSE 14 0.00 12:00 !67 65.6 64 27 IS.1 17.4 160 SSE 15 0.00 13:00 !69 67.7 67 28 IS.S 13.4 158 SSE 12 0.00 14:00 !70 68.9 68 27 IS.2 17.6 160 SSE 14 0.00 15:00 !70 68.9 68 25 17.4 17.1 156 SSE 11 0.00 16:00 !68 67.3 66 24 11.1 10.5 166 SSE 19 0.00 17:00 !66 63.4 61 7 3.0 2.3 222 SW 38 0.00 IB:00 !61 59.9 59 16 S.4 7.2 266 w 30 0.00 19:00 !59 57.9 57 6 3.3 2.9 205 SSW 29 0.02 20:00 ’57 56.5 56 5 2.3 1.5 243 WSW 49 0.02 21:00 !56 55.3 54 5 3.2 1..1 186 S 65 0.08 22:00 !55 54.4 54 4 2.0 1.4 156 SSE 46 0.02 23:00 !55 54.1 54 8 5.5 5.1 146 SE 21 0.02 24:00 !54 53.6 53 S 4.5 O 150 SSE 26 0.00 70 56.9 43 29 IT.1 10.6 0.16 NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY ****** CAYUGA LAKE INLET,ITHACA DAILY REPORT 10/03/87 TEMPERATURE:WIND: SPEED:VEL AVE DIRECTION AVE STDV PPT TOTALHIAVELDHIAVE 01:00 I 53 11 UI 1 PJ 1  1 CO 1l1i tn l PJ I11l M 11I 3.8 1 CJ 11 Ji j1 :i5i SSE 11 I’J 1il 0.00 ! 02:00 i 53 52.3 52 6 3.9 3.6 126 SE 23 0.00 ! 03:00 i 52 51.S 51 6 3.6 3.1 243 wsw 31 :0.00 ‘04:00 4 52 51.3 51 /10 3.7 3.1 300 WNW 32 0.00 ! 05:00 i 51 50.7 49 20 12.8 12.6 30S NW 9 0.00 ! 06:00 i ***-irSt **** *********} 07:00 t 49 47.9 47 23 17.9 17.5 323 NW 11 0.00 ! OS:00 i 47 46.3 46 22 17.3 17.2 312 NW *7 0.00 ! 09:00 J 47 46.3 46 20 15.6 15.2 310 MW 12 0.00 ! 10:00 t 48 47.1 46 22 16.9 16.4 320 NW 14 0.00 ! 11:00 >48 47.0 46 21 17.0 16.8 328 NNW 9 0.00 ! 12:00 I 48 46,7 46 23 IS.5 IS.i 339 NNW 13 0.00 ! 13:00 i 48 47.1 46 23 16.9 16.0 333 NNW 19 0.00 ! 14:00 I 49 47.7 47 24 19.0 18.5 332 NNW 14 0.00 ! 15:00 i 48 47.5 47 26 21.5 21.3 339 NNW 9 0.00 ‘16:00 i 47 46.5 46 26 20.S 20.5 347 NNW 10 0.00 ! 17:00 i 47 45.6 45 25 19.9 18.2 348 NNW 23 0.00 ’IS:00 t 46 45.3 44 23 17.0 16.5 343 NNW 14 0.00 .' 19:00 i 46 45.0 44 25 19.3 18.9 329 NNW 12 0.00 ! 20:00 (46 44.2 43 25 19.5 19.3 317 NW 10 0.00 ! 21:00 !46 45.3 45 27 24.1 23.7 337 NNW 10 0.00 ! 22:00 i 46 45.0 44 33 26.5 26.3 335 NNW s 0.00 ! 23:00 i 45 44.0 42 31 23.4 23.0 343 NNW 11 0.00 ! 24:00 i 44 43.3 42 30 23.9 23.3 343 NNW 12 0.00 ? 53 47.2 42 33 16 6 16 2 p O © d NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 12 MISSING DR BAD VALUES,REPRESENTED BY ****** CAYUGA LAKE INLET,ITHACA DAILY REPORT 10704/87 TEMPERATURE:WIND:PPT SPEED:VEL DIRECTION HI AVE LG HI AVE AVE AVE STDV TOTAL 01:00 !44 42.9 42 27 \PJ I PJ 11 Ui I1 21.9 321 NW 13 0.00 ! 02:00 !44 42.5 41 32 24.5 23,9 323 NW 13 0.00 ! 03:00 !45 43.7 43 32 26.2 25.8 331 NNW 11 0.00 ! 04:00 !44 43.3 43 33 29.1 23.3 332 NNW 9 0.00 ! 05:00 44 42.4 41 34 26.0 25.5 326 NW 10 0.00 ! 06:00 !43 42.2 41 36 26.6 26.1 325 NW 12 0.00 ! 07 :00 !43 41.3 40 34 <25.8 25.3 318 Nw 11 0.00 ! 08:00 !42 40 6 40 32 ''25.3 24,9 312 NW 10 0.00 ! 09:00 !41 40.5 40 29 24.1 23.7 308 NW 11 0.00 ! 10:00 !43 .40.9 40 32 26.0 25.o 313 NW 9 0.00 ! 11:00 !46 44.4 42 33 26.6 2 324 NW 9 0.00 ! 12:00 !48 46.7 45 32 -25.9 25.5 323 NW 10 0.00 ! 13:00 !50 49.0 48 31 24.2 23.6 322 NW 12 0.00 ! 14:00 !52 50.7 50 30 22.7 22.1 316 NW 13 0.00 ! 15:00 !53 52.2 51 29 20.6 20.1 312 NW 12 0.00 ! 16:00 !54 53.3 53 24 18.4 17.7 313 NW 15 0.00 ! 17:00 !54 53.2 53 21 15.3 14.9 312 NW 12 0.00 ! 18:00 !52 49.8 46 14 6.0 5.4 300 WNW 26 o:oo ! 19:00 !46 45.3 45 5 3.3 2;6 211 SSW 37 0.00 ! 20:00 ’45 44.6 44 6 4.4 4.3 145 SE 13 0.00 ! 21:00 !44 42.6 42 8 6.2 6.0 165 SSE 12 0.00 ! 22:00 ‘43 42.2 42 8 6.0 5.8 171 S ;;12 0.00 ! 23:00 !43 42.1 41 8 6.3 6.1 160 SSE 12 0.00 ! 24:00 !42 41.8 41 9 i th 1 . 1 J3 11» 6.3 165 SSE 9 0.00 ! 54 44.9 40 36 18.7 13.3 p Oo d NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY ****** CAYUGA LAKE INLET,ITHACA DAILY REPORT 10/06/87 TEMPERATURE:WIND:PPT SPEED:VEL DIRECTION HI AVE LO HI AVE AVE AVE 3TDV TOTAL 01:00 111 Cd I in lIrL-.50.7 50 10 i  i a- iti1 '-J lI UI I। 160 SSE 11 F-■ 1!i O 1 O 1 . 1 O 1I 02:00 !51 50.6 50 11 8.9 8.S 154 SSE 8 0.00 ! 03:00 !50 49.9 50 8 6.8 6.6 144 SE 13 0.00 ! 04:00 !50 48.9 48 10 7.6 7.5 156 SSE 9 0.00 ! 05:00 !51 50.0 49 9 7.4 7.3 156 SSE 10 0.00 ! 06:00 !50 48.4 47 10 S.2 8.2 151 SSE 7 0.00 ! 07:00 50 48.4 47 10 9.0 8.9 150 SSE h 0.00 ! 08:00 !54 51.4 50 10 8.6 8.5 148 SSE 9 0.00 ! 09:00 !58 56.4 54 13 S.7 8.5 162 SSE 12 0.00 ! 10:00 59 58.5 58 12 9.1 8.8 145 SE 15 0.00 ! 11:00 !61 60.3 59 11 S.9 8.7 133 SE 12 0.OO ! 12:00 !64 62.3 61 14 7.7 7.3 157 SSE 18 0.00 ! 13:00 !65 64.7 64 11 5.9 5.5 182 S .23 0.00 ! 14:00 «66 65.9 65 9 6.7 6.3 173 s 19 0.00 ! 15:00 !66 65.6 65 11 6.6 6.2 166 SSE 20 0.00 ! 16:00 !66 64.5 63 7 4.4 4.0 155 SSE 25 0.00 ! 17:00 !64 62.6 61 S 3.1 2.3 196 SSW 42 0.00 ! IS:00 !62 59.2 57 6 2.5 1.7 157 SSE 44 0.00 ! 19:00 !58 57.0 56 6 3.3 1.7 197 SSW 57 0.00 ! 20:00 !57 56.1 55 9 3.0 1.1 117 ESE 64 0.02 ! 21:00 !56 55.5 55 9 3.5 0.9 159 SSE 69 0.00 ! 22:00 !56 55.5 55 5 3.1 2.7 127 SE 29 0.08 ! 23:00 *55 55.0 55 8 5.4 5.1 129 SE 19 0.16 ! 24:00 !55 54.4 54 7 1 UI I  I o 11 4.9 140 SE 15 0.02 ! 66 i UI 1 O' 11 W 111 47 14 O' 1  1 W 111 I tn 1i in r 0.28 NOTES:. DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER -HOUR, WIND DIRECTION INDEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY ****** TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER -HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY ****** CAYUGA L AKE INLET,ITHACA DAILY REPORT 10/07/87 TEMPERATURE:WIND ppy SPEED:VEL DIRECTION: HI AVE LO HI AVE AVE AVE STDV TOTAL 01:00 !55 ri1 O 1 . 1 T I m i 1,11 CO 11!1 T i in 1 4.3 3.7 161 SSE 1--11i ru 1 o i1 o iii!i n t 02:00 !54 53.5.53 7 5.0 4.9 139 SE 12 0.10 ! 03:00 !54 53.3 53 5 3.2 2.5 106 ESE 38 0.02 ! 04:00 !53 52.9 53 6 3.1 2.4 152 SSE 38 0.02 ! 05:00 !53 52.3 -52 5 :3.1 2.9 140 :se 20 0.00 ! 06:00 !53 52.5 ;52 7 4.5 4.3 153 SSE 14 0.02 ! 07:00 !53 52,3 52 5 3.3 3.2 137 SE 17 0.00 ! 08:00 !54 53.1 52 5 2.6 2.5 138 SE 17 0.00 ! 09:00 !57 55.8 54 14 6.2 5.9 158 SSE 15 0.00 ! 10:00 !57 56:2 55 15 9.7 9.4 159 SSE 15 0.00 ! 11:00 !57 56.3 55 15 10.3 9.4 182 S 23 0.00 ! 12:00 !57 56.7 56 16 10.4 9.8 195 SSW 20 0.00 ! 13:00 !57 56.3 56 15 9.7 9.0 220 sw 22 0.00 ! 14:00 !58 56.3 56 11 7.2 6.4 195 SSW 27 0.00 ! 15:00 !58 56.5 56 14 8.8 8.2 209 SSW 21 0.00 ! 16:00 !56 54.9 54 14 8.1 7.4 219 SW 24 0.00 ! 17:00 !55 54.5 54 10 5.5 5.0 218 SW 24 0.00 ! 18:00 !54 52.3 50 7 3.9 3.7 184 "S..20 0.00 ! 19:00 !50 48.4 47 5 3.2 3.0 173 s 22 0.00 ! 20:00 !47 46.4 46 6 3.9 3.7 177 s 16 0.00 ! 21:00 !47 46.2 46 7 4.2 4.0 167 SSE IS 0.00 ! 22:00 46 46.0 46 6 4.0 3.8 164 SSE 19 0.00 ! 23:00 !46 44.6 44 5 3.2 2.9 153 SSE 25 0.00 ! 24:00 ‘44 43.5 O01"f 1 4»W 4) » SE 19 0.00 ! 58 52.3 42 16 1 intnin 0.18 NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME CAYUGA LAKE INLET,ITHACA DAILY REF WIND: SPEED: ORT 10/05/37 PPT TOTAL TEMPERATURE: VEL AVE DIRECTION: HI AVE LG HI AVE AVE STDV 01:00 !42 41.4 41 10 7.4 7.3 163 SSE 10 0.00 : 02:00 !41 40.3 40 9 6.1 5.9 165 SSE 13 0.00 ! 03:00 !41 40.4 40 8 5.7 5.5 168 SSE 14 0.00 ! 04 :00 !41 40.5 40 3 7.0 6.8 167 SSE 12 0.00 ! 05:00 !41 40.1 39 10 7 .7 7.6 166 SSE 12 0.00 ! 06:00 !42 40.6 39 10 6.S 6.7 163 SSE 11 0.00 ! 07:00 !44 41.9 41 13 9.6 9.4 163 SSE 9 0.00 ! 08:00 !48 45.5 44 13 10.6 10.5 154 SSE 6 0.00 ! 09:00 !55 51.2 48 12 9.3 9.1 148 SSE 12 0.00 ! 10:00 !59 57.3 55 12 9.5 9.3 148 SSE 11 0.00 ! 11:00 !63 61.2 59 12 9.5 9.2 156 SSE 13 0.00 ! 12:00 !66 64.4 63 14 9.1 8.3 174 S 24 0.00 ! 13:00 !68 66.4 65 14 8.0 7.4 159 SSE 21 0.00 ! 14:00 !69 68.1 66 13 8.1 7.7 161 SSE 13 0.00 ! 15:00 !70 69.0 68 14 7.6 7.0 169 S 2P 0.00 ! 16:00 !69 68.5 68 11 6.3 5.9 182 S 21 0.00 ! 17:00 !68 67.4 66 12 7.5 7.1 167 SSE 19 0.00 ! 18:00 !66 63.0 60 12 6.9 6.3 152 SSE 23 0.00 ‘19:00 !61 60.0 59 9 6.0 5.6 155 SSE 20 0.00 ! 20:00 !59 56.2 55 9 5.4 5.1 147 SSE 18 0.00 ! 21:00 !57 56.0 55 10 8.7 8.7 154 SSE 7 0.00 ! 22:00 !56 53.7 52 10 8.0 7.9 160 SSE 12 0.00 ! 23:00 !54 51.7 49 9 7.0 6.8 161 SSE 12 0.00 ! 24:00 !52 50.4 49 9 7.5 7.3 157 SSE 11 0.00 ! 70 54.0 39 14 7.7 7.4 0.00 NOTES: DATA REPORTED /^T THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING QR BAD VALUES,REPRESENTED BY ****** CAYUGA LAKE INLET/ITHACA DAILY REPORT 10/08/87 TEMPERATURE:WIND:PPT SPEED:VEL DIRECTION: HI AVE LD HI AVE AVE AVE rjiTDV TOTAL 01:00 !43 -L I PJ 1  1 sj 11 41 5 2.9 2.o 128 SE 25 0.00 ! 02:00 !42 41.6 41 5 1.9 1.7 172 s 0.00 ! 03:00 !43 42.3 41 5 3.3 3.2 169 SSE 16 0.00 ! 04:00 !43 41.4 41 5 3.1 3.1 176 s 14 0.00 ! 05:00 :42 40.9 40 8 4.8 4.6 159 SSE 17 0.00 ! 06:00 ’42 41.4 41 7 5.2 .5.1 143 SE 11 0.00 ! 07:00 !44 43;0 42 7 5.2 5.1 119 ESE 15 0.00 ! 08:00 !47 46.0 44 6 4.0 3.5 184 S 28 0.00 ! 09:00 !-48 47.1 46 22 10.4 9.2 285 WNW 28 0.00 ’10:00 !48 47.2 46 15 11.2 11.0 299 WNW 10 0.00 ! 11:00 !50 48.7 48 21 15.1 14.7 302 WNW 12 0.00 ! 12:00 !49 48.5 48 28 18.7 17.6 320 NW 20 0.00 ! 13:00 !50 48.3 47 30 14.6 13.6 317 NW 20 0.00 ! 14:00 !50 49.3 49 25 18.3 17.5 325 NW 18 0.00 ! 15:00 !50 49.8 49 25 17.2 16.9 326 NW 10 0.00 ! 16:00 !50 49.4 49 22 16.8 16.6 318 NW 9 0.00 ! 17:00 !49 48.4 48 20 13.4 12.6 301 WNW 20 0.00 ! 18:00 !48 47.2 46 14 10.4 9.8 301 WNW 20 0.00 ! 19:00 !46 43.4 42 10 5.8 4.9 257 WSW 32 0.00 ! 20:00 !43 42.0 41 8 5.8 5.7 228 SW 9 0.00 ! 21:00 !44 42.6 42 8 6.0 5.7 248 WSW 18 0.00 ! 22:00 !44 43.0 42 9 5.9 5.4 264 W 24 0.00 ! 23:00 !43 41.8 41 8 6.2 6.1 250 WSW 11 0.00 ! 24:00 !41 41.1 41 8 |S4 0-tr-246 WSW 10 0.00 ! 50 44.9 40 30 8 9 8.4 0.00 NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER -HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY ****** CAYUGA LAKE INLET,ITHACA DAILY REPORT 10/09/87 TEMPERATURE:WIND:PPT SPEED:VEL DIRECTION HI AVE LD HI AVE AVE AVE STDV TOTAL 01:00 1 42 41.0 39 8 5 3 -is Cr- i 234 SW 11 Cr 1 Cd l1 0.00 ! 02:00 !42 41.5 40 7 4.6 4.3 233 sw 20 0.00 ! 03:00 !42 40.5 40 6 3.2 2.3 156 SSE 42 0.00 ! 04:00 !41 40.3 40 8 4.5 4..0 170 s 28 0.00 ! 05:00 !41 40.1 39 8 4.5 4.2 157 SSE 19 0.00 ! 06:00 !39 38.5 37 7 5.1 4.9 150 SSE 18 0.00 ! 07:00 !40 38.3 37 10 S.0 7.8 129 SE 11 0.00 ! OS:00 !44 41.7 40 10 7.9 7.8 136 SE 11 0.00 ! 09:00 !47 45.4 43 14 11.0 10.7 152 SSE 14 0.00 ! 10:00 !51 49.1 47 16 10.1 9.6 165 SSE 19 0.00 ! 11:00 !53 51.6 50 15 10.6 10.1 166 SSE 18 0.02 ! 12:00 !56 54.0 52 19 11.0 10.6 161 SSE 16 0.00 ! 13:00 !57 56.3 55 19 10.S 10.2 167 SSE IS 0.00 ! 14:00 !57 56.7 56 19 11.7 11.1 163 SSE 17 0.00 ! 15:00 !56 55.S 55 19 14.9 14.7 151 SSE ,10 0.00 ! 16:00 !55 55.1 55 18 12.6 12.2 159 SSE 14 0.00 ! 17:00 !56 54.9 54 19 13.2 12.9 158 SSE 12 0.00 ! IS:00 !54 53.8 53 19 12.2 11.9 159 SSE 12 0.00 ! 19:00 !54 53.7 53 16 12.9 12.7 158 SSE 10 0.00 ! 20:00 !54 53.7 54 18 12.4 12.2 163 SSE 10 0.00 ! 21:00 !54 53.5 52 14 9.6 9.2 171 s 16 0.00 ! 22:00 !53 51.3 48 15 7.3 6.6 158 SSE 25 0.00 ! 23:00 !50 47.5 46 7 4.2 3.9 163 SSE 23 0.00 ! 24:00 !47 46.7 46 8 6.3 Cr-U 1 156 SSE 8 0.00 ! 57 48.4 37 19 1 CO 1  1 -0 11 8.5 0.02 NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F»WIND SPEED IN MILES—PER-HDUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY ****** CAYUGA LAKE INLET,ITHAC A DAILY REPORT DIRECTION: 10/10/87 PPT TOTAL TEMPERATURE: LO WIND: SPEED:VEL AVEHIAVEHIAVE AVE STDV 01:00 !48 47.0 47 9 7.7 1 160 SSE 7 0.00 ! 02:00 !.51 50.1 48 11 8.3 3.0 182 S 16 0.00 ! 03:00 !50 50.2 50 9 6.3 6.0 181 S 18 0.00 ! 04:00 !51 49.5 49 7 4.6 4.3 149 SSE 23 0.00 ! 05:00 !49 49.0 49 6 4.7 4.7 139 SE 10 0.00 ! 06:00 !49 48.5 48 8 5.7 5.6 149 SSE 10 0.00 ! 07:00 !49 48.4 48 9 6.6 6.3 152 SSE 19 0.00 ! 08:00 !48 43.0 48 7 ..3.2 2.3 169 S 28 0.00 ! 09:00 !52 50.1 49 14 4.3 2.4 320 NW 54 0.00 ! 10:00 !52 52.2 52 15 11.1 11.0 319 NW 9 0.00 ! 11:00 !52 51.6 51 18 15.6 15.5 338 NNW 7 0.00 ! 12:00 !.51 51.0 51 18 14.3 14.2 338 NNW 7 0.00  13:00 !52 51.5 51 16 12.6 12.6 343 NNW 6 0.00 ! 14:00 !53 51 9 51 18 14.8 14.6 346 NNW 8 0.00 ! 15:00 !53 52.5 52 17 13.5 12.9 349 NNW 18 0.00 ! 16:00 !53 52.5 52 15 11.3 11.1 336 NNW 8 0.00 ! 17:00 !52 51.1 50 15 11.7 11.5 313 NW 11 0.00 ! 18:00 !51 49.7 49 17 13.8 12.8 340 NNW 21 0.00 ! 19:00 !49 48.1 47 17 14.4 14.0 344 NNW 14 0.00 ! 20:00 !48 47.1 47 15 12.1 11.9 345 NNW 9 0.00 ! 21:00 !47 46.2 46 14 12.4 10.8 352 N 28 0.00 ! 22:00 !46 44.9 44 13 9.5 9.3 11 N 12 0.00 ! 23:00 !44 42.9 42 5 3.6 2.1 151 SSE 52 0.02 ! 24:00 !43 42.5 42 6 2.9 111 O 1  1 Ul i 71 ENE 74 0.00 ! 53 49.0 l1 PJ 11 18 9.4 11 to 11 CO 11 1- CdOo NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HDUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY ****** CAYUGA LAKE INLET;ITHACA DAILY REPORT 10/11/37 TEMPERATURE:WIND:PPT SPEED:VEL DIRECTION: HI AVE LO HI AVE AVE AVE STDV TOTAL 01:00 !43 41.7 41 4 3.1 2.4 176 8 39 11 O 11 O 1 O 'f!-02:00 !42 41.6 41 10 4.0 2.4 310 NW 51 0.04 ! 03:00 !42 40.9 40 10 7.9 7.5 310 NW 16 0.08 ! 04;00 !40 33.7 3 /10 7.2 6.1 300 WNW 33 0.04 ! 05:00 !39 38.0 37 11 8.2 7.4 338 NNW 26 0.02 ! 06:00 !39 37.S 37 12 9.S 9.1 358 N 20 0.02 ! 07:00 !39 38.2 37 11 8.8 8.1 354 N 2 0.00 ! OS;00 !39 38.1 38 9 7.1 7.0 294 WNW 11 0.04 ! 09:00 !39 38.1 38 9 7.0 6.9 292 WNW 12 0.02 ! 10:00 !40 38.9 38 7 4.8 4.4 310 NW 25 0.02 ! 11:00 !41 40.1 39 9 6.7 6.0 332 NNW 27 0.00 ! 12:00 !42 41.1 40 11 8.1 7.6 319 NW 22 0.00 ! 13:00 42 41.9 41 14 9.0 8.6 351 N 18 0.00 ! 14:00 !43 42.4 42 12 8.5 7.5 317 NW 27 0.00 ! 15:00 !44 43.2 43 15 11.9 11.2 355 N 20 0.00 ! 16:00 !44 43.3 43 11 9.1 8.6 326 NNW 20 0.00 ! 17:00 !44 43.4 43 11 8.5 8.3 294 WNW 12 0.00 ! 18:00 !44 43.3 43 10 7.9 7.9 291 WNW 8 0.00 ! 19:00 !43 43.2 43 9 7.4 7.3 288 WNW 9 0.00 ! 20:00 !43 42.7 42 10 7.4 7.3 239 WNW 9 0.00 J 21:00 !42 41.0 40 7 5.2 5.1 264 W 15 0.00 ! 22:00 !41 40.1 38 7 5.2 5.1 275 w 13 0.00 ! 23:00 !39 37.6 36 5 2.1 1.4 197 ssw 48 0.00 ! 24:00 !37 35.9 35 5 3.8 1 r-. I . 1 n i1 169 s 13 0.00  44 40.5 35 15 7.0 6.5 0.34 NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HOUR; WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY ****** CAYUGA LAKE INLET,ITHACA DAILY REPORT DIRECTION AVE 10/1278 PPT STDV TOTAL 7 TEMPERATURE:WIND: SPEED:VEL AVEHIAVELDHIAVE 01:00 36 11 W 1 UI 1!]!i 35 o 11 O' 11 i1 S 1I11 160 SSE 12 0.00 02:00 36 35.1 34 7 5.0 4.9 149 SSE 9 0.00 03:00 35 34.8 34 6 5.0 4.8 128 SE 15 0.00 04:00 35 34.5 34 6 4.2 4.0 146 SSE IS 0.00 05:00 35 33.8 33 7 5.3 5.1 139 SE 14 0.00 06:00 34 33.7 33 7 5.3 5.1 158 SSE 15 0.00 07:00 34 33.9 33 6 4.1 3.1 177 S 39 0.00 4 OS:00 35 34.2 34 9 5.9 5.6 166 SSE 16 0.00 09:00 39 37.1 35 8 6.3 6.0 141 SE 17 0,00 10:00 44 42.2 39 /4.6 4.4 132 SE 17 0.00 11:00 48 46.1 44 6 3.3 1.9 4 N 52 0.00 12:00 48 46.3 46 6 5.2 5.1 347 NNW 12 0.00 13:00 50 48.6 48 7 5.6 5.4 344 NNW 14 0.00 14:00 48 48.0 48 11 9.0 8.9 348 NNW 7 0.00 15:00 49 48.5 48 12 8.7 8.5 347 NNW 13 0.00 16:00 50 48.9 49 12 8.4 3.2 318 NW 11 0.00 17:00 49 47.7 47 12 7.9 7.8 300 WNW 12 0.00 IS:00 47 45.8 44 6 3.6 2.7 262 W 40 0.00 19:00 44 43.4 43 6 4.0 2.5 203 SSW 50 0.00 20:00 43 42.5 42 7 5.4 5.3 164 SSE 10 0.00 21:00 !42 41.9 41 8 6.4 6.3 150 SSE 10 0.00 22:00 !42 40.3 39 7 5.3 5.2 159 SSE 13 0.OO 23:00 !39 38.2 37 7 5.4 5.2 152 SSE 17 0.00 24:00 !38 37.1 37 7 1 Ch 1 . 1 m i1 1 O 1 . 1 in il1 146 SE 16 0.00 50 40.8 33 12 5.6 5.3 0.00 DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TINE) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY CAYUGA LAKE INLET;ITHACA DAILY REPORT 10/13/37 TEMPERATURE LD WIND¬ SPEED:VEL AVE DIRECTION: PPT TOTAL /HI AVE HI AVE AVE I"TDV 01:00 L 37 35.9 35 8 l O' 1  1 UI I1I 1i n iio1t 152 SSE 13 11 a i  i O I O !1i 02:00 !36 34.5 34 9 6.3 6.1 145 SE 15 0.00 03:00 !34 33.5 33 7 5.0 4.8 160 SSE 14 0.00 04:00 !33 32.6 32 S 5.5 5.3 155 SSE 15 0.00 05:00 *33 32.1 31 7 4.5 :4.2 153 SSE is ;0.00 06:00 !33 32 0 31 6 4.5 4.3 162 SSE 16 0.00 07:00 !33 31.9 31 6 5.3 5 2 159 SSE 14 0.00 OS:00 !36 34.1 33 8 5.9 5.8 157 SSE 12 0.00 09:00 !41 38.1 35 6 5.0 5.0 152 SSE 8 0.oo 10:00 !46 43.9 42 5 2.7 1.4 333 NNW 56 0.00 11:00 !49 46.3 45 8 6.0 5.9 347 NNW 11 0.00 12:00 !50 48.7 47 12 6.6 6.5 352 N 10 0.00 13:00 ! 14:00 ! 53 53 50.9 51.7 50 51 14 17 8.9 12.9 8.8 12 6 342 325 NNW NW 11 13 0.00 0.00 15:00 !52 51.9 51 17 11.9 11.7 332 NNW 11 0.00 16:00 !53 52.6 52 17 11.3 11.1 332 NNW 12 0.00 17:00 !53 52.1 51 14 11.5 11.4 306 NW 9 0.00 18:00 !51 48.8 46 10 5.8 5.7 293 WNW 11 0.00 19:00 !47 44.4 43 5 4.0 2.0 261 W 58 0.00 20:00 !43 41.4 40 6 5.4 5.3 164 SSE 11 0.00 21:00 !40 39.2 38 10 7.2 7.1 158 SSE 10 0.00 22:00 !39 37.1 36 9 6.5 6.2 147 SSE 17 0.00 23:00 !37 35.8 35 9 6.6 6.5 159 SSE 11 0.00 24:00 !35 34.2 33 9 7.1 7.0 159 SSE 11 0.00 +=; 53 41.0 31 17 6.8 6.5 0.00 NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED INDEGREES F,WIND SPEED IN MILES-PER-HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY ****** CAYUGA LAKE INLET,ITHACA DAILY REPORT 10/14/87 NOTES: TEMPERATURE:WIND: SPEED:VEL AVE DIRECTION AVE STDV PPT TOTALHIAVELDHIAVE 01:00 !34 33.0 1i U i PJ 1i 9 ! 0' !i PJ !1 5.9 158 SSE IS 11 O I o 1 . 1 o I1 02:00 !33 32.5 32 9 6.2 6.2 141 SE 9 0.00 ! 03:00 !33 32.2 32 8 6.5 6.3 146 SE 12 0.00 ! 04:00 !33 32.0 31 9 7.2 7.1 145 SE 8 0.00 ! 05:00 ‘32 31.5 31 10 7.5 7.5 145 SE 6 0.00 ! 06:00 !31 30.8 30 9 7.5 7.4 137 SE 9 0.00 ! 07:00 33 31.6 30 9 7.8 7.7 137 SE 9 0.00 ! 08:00 !37 34.a 33 9 7.4 7 3 134 SE 9 0.00 ! 09:00 !43 39.5 37 10 7.9 7-9 151 SSE 6 0.00 ! 10:00 ********************************! 11:00 !55 53.5 51 9 6.2 6.1 140 SE 10 0.00 ! 12:00 ’57 55.6 55 10 7.7 7.4 144 SE 16 0.00 ! 13:00 !58 57.1 56 12 8.2 7.5 146 SSE 23 0.00 ! 14:00 !62 59.3 58 10 5.2 4.8 144 SE c-d 0.00 ! 15:00 !61 59.8 59 11 6.2 5.8 142 SE 21 0.00 ! 16:00 !61 60.7 60 10 5.1 4.7 163 SSE 22 0.00 ! 17:00 !61 59.2 55 4 2.2.1 179 S 31 0.00 ’18:00 !56 52.5 50 7 4.4 4.2 163 SSE 17 0.00 ! 19:00 !52 49.6 4S 6 4.2 3.9 176 S 21 0.00 ! 20:00 !50 48.5 47 8 6.1 6.0 138 SE 11 0.00 ! 21:00 !47 46.5 46 9 7.3 7.3 134 SE 8 0.00 ! 22:00 !46 44.5 44 9 7.6 7.6 138 SE 8 0.00 ! 23:00 !44 43.4 41 9 6.9 6.8 142 SE 12 0.00 ! 24:00 !44 42.8 42 10 8.3 1 Cd 1 . 1 CO ii1 146 SE 8 0.00 ! 62 44.8 30 1 i- 1 PJ 1।i1 O !1 UI !11i 0' I  1 U 111 0.00 DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER -HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 12 MISSING OR BAD VALUES,REPRESENTED BY ****** 10/1CAYUGALAKEINLET,ITHACA DAILY REPORT TEMPE HI RATURE: AVE LD HIND: SPEED:VEL DIRECTION AVE STDV PPT TOTALHIAVEAVE 01:00 !42 41.2 40 10 7.3 7.1 154 SSE 14 0.00 02:00 !42 40.8 40 11 9.2 9.1 163 SSE 11 0.00 03:00 !40 39.1 38 11 S.6 8.5 160 SSE 8 0.00 04:00 !39 38.3 38 9 7.6 7.5 153 SSE 8 0.00 05:00 !38 37.7 37 9 7.4 7.3 154 SSE 12 0.00 06:00 !38 36.9 36 10 7.7 7.6 160 SSE 10 0.00 07:00 !37 36.4 36 9 7.1 7.0 159 SSE 11 0.00 OS:00 !39 38.1 37 10 8.2 8.1 158 SSE 7 0.00 09:00 !46 42.8 39 9 7.0 6.9 148 SSE 11 0.00 10:00 !53 49.1 46 6 5.0 5.0 148 SSE 8 0.00 11:00 !60 56.4 53 4 2.8 2.4 145 SE 30 0.00 12:00 !60 58.5 57 8 5.0 4.8 349 NNW 14 0.00 13:00 !61 59.9 58 8 5.5 5.3 313 NW 13 0.00 14:00 !62 60.8 59 8 5.1 5.0 303 WNW 13 0.00 15:00 !63 62;0 59 7 5.2 4.8 309 NW 21 0.00 16:00 ’64 60.5 59 8 4.9 4.2 313 NW 30 0.00 17:00 !61 59.2 58 5 3.3 2.8 324 NW 30 0.00 18:00 ‘58 55.2 53 4 1.4 1.0 123 ESE 45 0.00 19:00 !53 51.6 50 4 2.4 2.3 168 SSE 18 0.00 20:00 !51 49.9 49 3 2.2 2.1 165 SSE 18 0.00 21:00 !49 48.7 48 6 3.4 3.2 160 SSE 18 0.00 22:00 !49 47.7 46 8 5.7 5.7 1 58 SSE 9 0.00 23:00 ‘47 46.4 45 8 5.8 5.7 162 SSE 11 0.00 24:00 !46 111 UI 1  1 U 1। 44 111 CO !1i1 O' i 1 1 W 111i 0- 1 ’ 1I 156 SSE 9 0.00 64 48.4 36 11 11I . i in ii! '0 1I in 1 1 o i  1 O 1 O 11 NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY ««« CAYUGA LAKE INLET,ITHACA .DAILY REPORT 10/16/87 TEMPERATURE:WIND:PPT SPEED:VEL DIRECTION: HI AVE LD HI AVE AVE AVE STDV TOTAL. 01:00 !45 44.3 43 lII 03 11 1 Cr- !  1 Ui 1Ii i11 . i O I 161 SSE 111 CO 1111 O 1  1 O 1 O 11 02:00 !44 43.3 43 8 6.3 6;3 158 SSE ....9 0.00 03:00 !44 42.5 42 8 6.3 6,2 155 SSE 9 0.00 04:00 !43 42.0 41 7 5.9 5.9 157 SSE 5 0.00 05:00 !42 41.3 41 7 5.2 5.1 162 SSE 10 0.00 06:00 !41 40.8 40 9 6.4 6.3 161 SSE 9 0.00 07:00 !42 41.1 40 9 7.8 7.7 148 SSE 10 0.00 08:00 !45 43.3 42 10 7.8 7.7 145 SE 12 0.00 09:00 !51 47.6 45 9 7.4 7.3 149 SSE 9 0.00 10:00 !58 54.5 51 7 5.8 5.6 156 SSE 16 0.00 11:00 !66 61.8 58 6 4.4 4.3 147 SSE 11 0.00 12:00 !69 67.3 65 10 6.0 5.6 159 SSE 21 0.00 13:00 !70 69.0 68 10 6.6 6.4 146 SSE 14 0.00 14:00 !71 70.2 69 11 6.7 6.1 156 SSE 23 0.00 15:00 !71 70.1 69 12 8.8 8.5 150 SSE 14 0.00 16:00 !70 69.3 68 14 10.0 9.8 148 SSE 11 0.00 17:00 !70 67.2 63 11 6.3 6.1 150 SSE 11 0.00 18:00 !63 61.6 60 6 4.3 4.1 171 S 15 0.00 19:00 !59.3 57 8 5.1 4.8 169 S 19 0.00 20:00 !57 56.2 55 8 5.6 5.5 157 SSE 12 0.00 21:00 !55 54.2 53 9 7.8 7.7 161 SSE 7 0.00 22:00 !56 53.1 52 10 8.7 8.7 153 SSE 7 0.00 23:00 !57 56.1 54 9 7.4 7.3 142 SE 10 0.00 24:00 !57 54.5 51 i1 cr 111 5.1 4.6 140 SE 26 0.00 71 54.6 40 14 6.6 1 th 1  I L 1i 0.00 NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HDUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY ****** CAYUGA LAKE INLET,ITHACA DAILY REPORT 10/17/87 TEMPERATURE:WIND: SPEED:VEL AVE DIRECTION AVE..STDV PPT TOTALHIAVELOHIAVE 01:00 !54 50.6 49 9 4.0 3.8 138 SE 19 0.00 02:00 !56 54.4 53 11 8.4 8.2 136 SE 13 0.00 03:00 !54 52.6 52 9 7.3 7.2 137 SE 12 0.00 04:00 !54 52.5 52 11 9.1 8.9 154 SSE 10 0.00 05:00 !54 53.4 53 13 9.6 9.4 168 SSE 12 0.00 06:00 !53 53.0 52 13 10.1 9.9 .165 SSE 9 0.00 07:00 !53 52.7 52 16 12.5 12.3 157 SSE 11 0.00 OS:00 !54 52.9 52 16 13.3 13.6 148 SSE S 0.00 09:00 !57 55.3 54 19 15.3 15.2 155 SSE .7 :0.00 10:00 !59 58.2 57 22 16.4 16.2 152 SSE 8 0.00 11:00 !63 61.6 60 22 17.3 17.0 155 SSE 11 0.00 12:00 !65 64.2 63 25 16.9 16.5 156 SSE 11 0.00 13:00 !67 65.9 65 24 17.6 17.2 161 SSE 13 0.00 14:00 !68 66.8 66 23 18.2 17.7 153 SSE 13 0.00 15:00 !69 67.S 67 22 15.5 15.0 159 SSE 14 0.00 16:00 !68 67.4 66 22 15.1 14.7 161 SSE 12 0.00 17:00 !67 65.3 64 16 10.5 10.4 159 SSE 11 0.00 18:00 !65 63.3 62 10 7.9 7.8 152 SSE 9 0.00 19:00 !63 62.6 62 16 10.5 10.1 161 SSE 14 0.00 20:00 !63 61.5 60 12 8.1 8.1 168 SSE 8 0.00 21:00 !60 59.8 59 8 6.4 6.3 166 SSE 8 0.00 22:00 !60 58.6 57 9 5.8 5.6 163 SSE 12 0.00 23:00 !58 56.2 54 5 3.1 2.6 209 SSW 34 0.00 24:00 !58 55.3 53 7 l O 1 . 11!111 u 1  1 PJ 1 222 SW 37 0.00 69 58.8 49 25 11.0 10.7 0.00 NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES THERE WERE 0 MISSING DR BAD VALUES,REPRESENTED BY ****** CAYUGA LAKE INLET-ITHACA DAILY REPORT 10/1S/S7 TEMPERATURE:WIND:PPT SPEED:VEL DIRECTION: 01 00 ! HI 57 AVE 56.4 LD 55 HI 6 AVE 4.3 AVE 4.1 AVE STDV 16 TOTAL 0.00 =+ 1235SW 02 00 !55 51.S 50 4.7 4.2 267 W 25 0.00 1 03 00 !50 48.7 47 6 3.4 3.0 168 SSE 28 0.00 1 04 00 !49 48.1 47 6 4.2 3.7 127 SE 29 0.00 1 05 00 !52 49.3 48 9 4.7 3.1 173 o 47 0.00 1 OS 00 !53 52.8 52 12 7.7 7.4 227 SW 16 0.00 I 07 00 !53 53.0 53 If 7.9 7.8 231 SW 11 0.00 1 08 00 !53 53.0 53 10 6.6 6.4 216 SW 12 0.00 1 09 00 !54 53.8 53 11 7.6 7.4 224 SW 13 0.00 t 10 00 !55 54.5 54 11 6.6 6.1 245 wsw 21 0.00 I 11 00 !55 55.0 55 8 4.6 3.8 316 NW 33 0.00 t 12 00 !55 55.1 55 5 2.9 2.6 53 NE 26 0.00 1 13 00 !56 55.4 55 4 2.7 2.1 NNE 38 0.00 i 14 00 !56 55.8 56 3 1.5 0.6 342 NNW 64 0.00 1 15 00 !56 55.5 55 6 3.4 2.9 332 NNW 31 0.00 I 18 00 !56 56.1 56 7 4.3 3.9 254 WSW 26 0.00 i 17 00 !56 55.6 55 6 3.2 3.1 224 SW 12 0.00 i IS 00 !55 54.0 53 5 2.8 2.6 212 ssw 19 0.00 19 00 !53 52.9 53 3 1.5 1.4 147 SSE 22 0.00 i 20 00 !54 53.2 53 6 3.5 3.0 124 SE 29 0.00 I 21 00 !53 52.6 52 5 3.3 3.1 157 SSE 21 0.00 i 2af 00 !52 50.7 50 7 3.3 2.8 155 SSE 32 0.00 i 23 00 !51 50.6 50 3 6.9 6.8 145 SE 11 0.00 t 24 00 !50 i111 <i 1 ' 1 (J !1 48 9 7.7 7.6 137 SE 10 1 O 1 © 1 . 1 O 1!i t 57 53.0 47 12 4.6 4.1 0.00 NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HOUR, WIND DIRECTION INDEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OF?BAD VALUES,REPRESENTED BY ****** CAYUGA L.akE INLET,ITHACA DAILY REPORT 10/19/87 NOTES: TEMPERATURE:WIND: SPEED:VEL AVE DIRE AVE CTION: STDV PPT TOTALHIAVELOHIAVE 01:00 !48 47.1 46 I1 O 111। 7.4 1! W i  1 U 11 139 SE 10 0.00 02:00 !46 45.1 45 8 6.1 6.0 134 SE 8 0.00 03:00 !45 44.6 44 10 7.9 7.8 144 SE 8 0.00 04:00 !44 42.9 42 9 7.3 7 2 140 SE 8 0.00 ' 05:00 !43 41.7 41 8 7.4 7.3 146 SE 9 0.00 06:00 !41 39.9 39 9 7.1 7.0 138 SE 10 0.00 07:00 !40 38.a 38 9 7.1 7.0 139 SE 8 0.00 08:00 !43 41.0 39 9 7.3 7.3 145 SE 7 0.00 09:00 !48 45.3 43 8 6.8 6.7 148 SSE 10 0.00 10:00 !56 51.4 48 7 4.9 4.9 153 SSE 7 0.00 11:00 !59 57.2 55 6 3.3 2.9 .125 SE 31 0.00 12:00 !62 60.4 57 9 6.2 5.7 143 SE 22 0.00 13:00 !'64 62.7 9 6.5 6.0 131 SE 24 0.00 14:00 !65 64.5 64 10 7.1 6.9 145 SE 12 0.00 15:00 !66 64.9 64 10 6.6 6.2 157 SSE 20 0.00 16:00 !66 65.8 65 7 4.6 4.5 151 SSE 15 0.00 17:00 !66 63.2 61 4 2.4 2.2 .175 S 23 0.00 18:00 !61 59.5 57 .8 4.9 4:6 169 SSE 20 0.00 19:00 !61 57.3 55 10 4.9 4.5 148 SSE 2 5 0.00 20:00 !55 54.3 54 8 5.4 5.2 152 SSE 14 0.00 21:00 !55 53.3 52 8 6.5 6.4 149 SSE 11 0.00 22:00 !53 52.0 51 9 6.9 6.8 146 SSE 9 0.00 23:00 !51 50.2 49 10 8.1 8.1 158 SSE 6 0.00 24:00 !50 49.1 49 1I O' 111 1 O' 1  1 'O 1!!1 l> 1 ’ 1 CO 1 158 SSE 11 i- l PJ ! 0.00 66 111 Cd 11 Cd imI 38 10 O' i  1 PJ i1 6.0 0.00 DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HOUR. WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY CAYUGA LAKE INLET,ITHACA DAILY REPORT WIND: DIRECTION AVE !STDV 10/20/87 PPT TOTAL TEMPE HI RATURE: AVE LO SPEED: HI AVE VEL AVE 01:00 !52 I W 1 O 1  1 KJ )111 Js. ! -0 11 9 6.3 6.0 154 SSE 17 1i O f1 O 1 O !i1 02:00 !51 50.3 50 7 5.1 4.9 159 SSE 14 0.00 ! 03:00 !51 50.2 50 8 5.8 5.6 153 SSE 14 0.00 ! 04:00 1 50 50 1 50 7 4.4 4.3 157 SSE 16 0.00 ! 05:00 !53 so.a 50 10 6.1 5.9 159 SSE 13 0.00 ! 06:00 !54 52.8 52 9 7..3 7.1 142 SE 14 0.00 ! 07:00 !55 54.3 53 12 9.7 9.6 147 SSE 7 0.00 ! 08:00 !56 55.2 55 13 10.5 10.3 152 SSE .11 0.00 ! 09:00 !56 56.0 55 16 10.9 10.8 162 SSE 9 0.00 ! 10:00 !55 55.2 55 12 8.3 8.3 157 SSE 8 0.00 ! 11:00 !56 55.,3 11 9.2 9.2 150 SSE o 0.00 ! 12:00 !56 56.1 56 11 8.3 8.1 139 SE 11 0.02 ! 13:00 !57 56.5 56 11 8.7 8.5 148 SSE 13 0.00 ! 14:00 !57 56.2 56 10 7.5 7.3 151 SSE 13 0.02 ! 15:00 !57 56.6 56 14 10.7 10.5 149 SSE 9 0.00 ! 16:00 !58 57.2 57 13 11.0 10.9 157 SSE 9 0.00 ! 17:00 !57 57.2 57 13 10.0 9.8 162 SSE 9 0.00 ! IS:00 !57 57.1 57 13 10.5 10.4 158 SSE 8 0.00 ! 19:00 !57 57.2 57 14 9.6 9.3 174 .s,-'14 0.00 ! 20:00 !58 56.9 56 9 6.9 6.8 164 SSE 10 0.00 ! 21:00 !56 55.5 55 8 5.1 4.9 155 SSE 15 0.00 ! 22:00 !55 55.2 55 9 6.0 5.7 145 SE IB 0.02 ! 23:00 !56 55.3 55 6 4.5 4.4 171 S.12 0.00 ! 24:00 !56 54.3 54 7 3.0 1 O 1 . I O i!1 220 sw 68 0.00 ! 58 54.7 49 £ 1!1I xj I11111  i11 0.06 MOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HOUR, WIND DIRECTION INDEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY *««««# CAYUGA LAKE INLET;/ITHACA DAI LY REPORT 10/21/87 TEMPERATURE:;77V WIND:77/77 :7/'PPT>7-7 SPEED:VEL DIRECTION: HI L0 HI 7 AVE;AVE AVE STDV TOTAL .——.i*-.__--- -VW.—---....——...——-——'vww ———-—-wv wv —•MM MM MM —M aww w MM.MM MM MM MM,MM MM MM MM MM “f” 01:00 !56 '54.2 53 12 5.5 7 4.9 342 :NNW 29 0.00 ! y 02:00 !53 52.7 52 7:37::1.3 0.7 182 S 7 55 0.00 ! 03:00 !53 52.1 527 14 \6.8 6.5 320 NW 19 0 oo 7! 04:00 !52 51.6 51 13 9.8 9.7 323 NW 8 0.00 ! 05:00 ?51 50.6 50 10 '8.2 7.6 342 NNW 7 22 0.00 ! /06:00 !50 49.6 49 13 7 9.3 8.7 338 NNW 21 0.00 '07:00 I 49 49.7 48 15 1073 10.1 316 NW 13 0.00 ! 08:00 !49 49.1 48 11 8.5 9.4 322 NW 10 70.00 ! 09:00 J 48 47.1 47 14 10.4 10.0 329 NNW 15 0.00 ! 10:00 !49 47.7 47 12 7.8 7.1 351 N 24 0.00 ! 11:00 !50 49.3 49 14 7.8 6.8 292 WNW 297 TO.00 ! 12:00 !49 49.3 48 7 13 10.9 10.5 326 7 NW 7 715 0,02 ! 13:00 !49 49:5 i'48 15 10.8 9.7 324 NW 25 0.00 !y 14:00 .’'51 50.1 7 49 7 22 11.3 10.4 291 WNW 23 0.00 .'</7 15:00 !49 48.4 48 19 13.'5 13.2 344 NNW 13 0.00 ! 16:00 !49 ‘49.3 7 22 15.8 14.9 322 7 NW 7 19 0.00 ! 17:00 !48 47.4 47 '17 8.8 3.3 290 WNW 20 0.00 ! 19:00 !47 46.9 46 15 7.8 271 W 28 0.00 ! 19:00 !46 44.4 42 18 12.3 11.6 309 NW 19 0.00 ! -j 20:00 !42 40.3 39 17 11.8 11.5 299 WNW 13 0.08 ! 21:00 !40 39.5 39 13 10.0 9.8 299 7 WNW 11 0.04 ! 22:00 !41 40.7 40 11 9.3 8.2 291 W 9 0.02 ! 23:00 !42 40.9 39 20 11.9 11.4 308 NW 16 0.02 ! 24:00 !40 39.1 39 12 7“;6.<5 -6.2 295 WNW 18 0.00 ! 4-22 =MM MM MM «MM MM MM MM'aB MM MM MM ^M *-'■.Ww^'—v __::'.—v --’’■-_ VMM MM MM V^M ««M MM VM M -M-MM MM MM MM MM MM MM MM -M _ MM MM MM MM —'--''1 7-56 47.3 39 22 94 ;7/8<97777 7 77 0.18 NOTES:7 DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HOUR, WIND DIRECTION IN DECREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY CAYUGA LAKE INLET,ITHACA DAILY REPORT 10/22/37 TEMPERATURE:WIND:'■PPT<^\77'.’.SPEED:-7 7 7 hi am.am aM mo tea AVE LO HI //.AyE?J AVE :AVE STDV TOTAL 01:00 T“———o —m-— !40 -39.5 /39 4 1.9 1.5 214 sw /37 0.00 “F -y ..02:00 !40 39.7 39 '■6 3.3 3.0 165 SSE 24 0.00 1 03:00 !40 39.0 >39 ’5 .3.0 .2.8 199 SSW 24 0.00 i , 04:00 !39 37.2 36 '6 ".4.4 .'>4.2 <150 SSE 16 0.00 * 05:00 777 36 34.9 34 7 6 7 4.9 4.9 143 SE ;?io 0.00 06:00 !35 34.3 33 8 .5.6 5.4 154 'SSE 14 0.00 07:00 !36 34.4 33 s 6.3 7 6.1 151 C SSE 15 0.00 j Y OS:00 !40 37.7 36 10 7.0 6.9 134 SE ,,12 0.00 .1'7 09:00 J 44 41.9 40 7 4.6 4.4 133 SE 19 0.00 I 10:00 !.47 45.6 44 13 7.7 7^-9 287 WNW 48 0.00 11:00 !49 47.2 46 14 8.6 -77?2':321 NW 33 :o.oo7 r 12:00 !51 49.1 47 17 10.6 '9.8 323 ;NW 22 0.00 I / 13:00 !51 49.8 .49 16 !11.8 11.1 340 NNW 7 20 0.00 .1 y -'14:00 !53 .51.0 50 16 8.5 6.4 ?287 WNW 41 0.00 7'V 7 .15:00 !-52 51.3 ?'51 :10 7-6.7 6.2 248 ;wsw 21 0.00 16:00 !52 51.7 51 10 6.4 5.8 285 WNW 25 o.do t ;.y 17:00 !52 49.a 47 10 4.4 4.2 ..263 17 0.00 *'13:00 7.-/47 45.0 43 /7 -2.5 77 2j 1-171 :'S"?'31 0.00 t"' 19:00 !45 42.7 <41 ;7 5.0 4.8 163 J SSE 13 0.00 t-20:00 !CvO 42 41.4 41 9 6.6 6.5 145 -SE '-7 10 0.00 r -21:00 !-41 40.3 40 '7 5.3 Y 5.1 153 SSE is 0.00 I: 22:00 !42 .41.1 40 ./73:'6.1 6.0 156 SSE ,10 0.00 1 '' 23:00 !J 45 42.5 42 s 4.2 3.8 j 159 SSE 24 0.00 1 24:00 !47 45.7 44 10 7 4.8 3.5 153 SSE 41 0.00 r „2. *,/■'’’<'' . ';;53 .43.0 33 17 ma aaaaa ma*maa aam <i« 5.8 5.3 a mw 0.00 ’T’ NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN.STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING DR BAD VALUES,REPRESENTED BY CAYUGA LAKE INLET.-ITHACA DAILY REPORT 10 /23/87 TEMPERATURE:WIND: SPEED:VEL AVE DIRECTION: PPT TOTALHIAVELOHIAVEAVESTDV 01:00 !48 47.2 46 8 11 ID 1 . ii I1 CJ   1 W 1! 170 !1 Cd 1I1Ii11 £0 1 ।1 O 1i o i O 1ii 02:00 !48 46.5 46 17 8.6 7.9 212 SSW '23 0.00 ! 03:00 !46 46.0 46 11 7.5 7.0 161 SSE 22 0.00 ! 04:00 !47 46.2 46 12 8.4 8.0 159 SSE 17 0.00 ! 05:00 !47 46.7 46 11 9.0 3;9 176 S 9 0.00 ! 06:00 !47 47.3 47 12 9.7 9.4 179 S 14 0.00  07:00 !48 47.3 47 12 9.3 9.1 176 S 13 0.00 ! 03:00 ’49 48.0 47 13 9.7 9.6 164 SSE 9 0.00 ! 09:00 !51 50.0 49 16 11.5 11.3 171 S 12 0.00 ! 10:00 !54 52.0 50 17 12.0 11.6 167 SSE 14 0.00 ! 11:00 !55 53.9 54 16 10.7 10.4 171 S 14 0.00 ? 12:00 !58 56.4 54 15 9.8 9.2 177 S 20 0.00 ! 13:00 *60 58.5 57 13 8.6 8.0 172 S 20 0.00 ! 14:00 !59 58.2 58 18 11.8 11.4 171 S 15 0.00 ! 15:00 !59 58.5 58 18 11.9 10.3 189 S 29 0.00 ! 16:00 !59 58.4 58 13 8.3 7.7 199 SSW 22 0.00 ! 17:00 !58 57.7 57 10 6.3 6.0 192 SSW 18 0.00 ! IS:00 !57 55.6 54 7 4.9 4.8 179 S 13 0.00 ! 19:00 !54 52.3 51 7 5.1 5.1 165 SSE 8 0.00 ’20:00 !53 52.2 51 9 6.9 6.8 177 S 9 0.00 ! 21:00 !52 49.7 47 9 6.6 6.4 174 S 14 0.00 ! 22 '00 !50 48.3 47 6 4.1 1.6 148 SSE 63 0.00 ! 23:00 !48 46.3 46 6 2.9 2.8 166 SSE 15 0.00  24:00 !46 45.1 44 10 1ll  1 W 1Ii1 O 1  i CJ I 160 SSE 10 0.00 ! 60 51.2 44 18 CO 7.6 ।i O 1  1 O 1 O 111-i NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IM MILES-PER -HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY ****** ,CAYUGA LAKE-INLET,ITHACA DAILY REPORT 10/24/87 TFMPERATURE:WIND:PPT SPEED:VEL DIREC TION HI AVE LO HI AVE AVE AVE STDV TOTAL 01:00 !45 . 11 4* 1 U !1 CD 1 : 11 43 8 UI I  I TJ I1 i11i in Il 141 1 SE 11 0.00 1 !43 41.5 40 7 5.3 5.2 162 'SSE 12 0.00 1 03:00 !41 ;40.S 40 10 8.4 3.4 156 SSE 7 0.00 .i 04:00 !40 -39.3 >'3?^10 8.4 8.3 155 SSE 8 0.00 1 05:00 39 37.5 37 7 4.2 3.8 164 SSE 25 0.00 i 06:00 !37 36.5 36 3 1.8 1.7 212 SSW 14 0.00 07:00 38 '36.3 36 5 2.8 2.7 169 SSE 15 0.00 i OS:00 !44 42.1 37 8 6.7 6.6 128 SE 11 0 00 i 09:00 50 46.8 44 11 9.1 8.9 154 SSE 11 0.00 .1 10:00 !V.;\55 52.9 50 9 8.0 7.9 154 SSE 9 0.00 1 11:00 !60 58.1 55 15 9.5 9.1 143 SE 18 0.00 'I 12:00 !62 60.9 59 19 11.9 11.5 160 SSE 15 0 00 1 13:00 !64 >62.8 62 18 13.2 12.9 163 SSE 12 0.00 I 14:00 >;63 20 12.8 12.5 169 S 13 0.00 i, 15:00 !o 67 66.4 65 20 15.4 15.1 174 s 12 0.00 i 16:00 !66 :64.7 64 2c?.15.6 15.3 164 SSE 10 0.00 i 17:00 !65 .63.8 63 21 13.0 12.8 165 SSE 10 0.00 t IS:00 !64 63.3 62 20 12.8 12.5 160 SSE 13 0.00 .? 19:00 !64 63.2 62 17 10.3 9.9 168 SSE 16 0.00 t 20:00 !63 ...62.3 62 .15 9.5 9.3 165 SSE 12 0.00 t 21:00 62 61.9 61 16 10.1 9.6 165 SSE 18 0.00 t 22:00 !63 60.0 57 13 7.7 6.9 206 SSW 26 0 00 i 23:00 !57 54.6 50 23 8 9 3.7 187 S 62 0.04 i 24:00 !50 ..48.2 45 26 18.5 17.9 283 WNW 15 0.06 i \'^J'.'67-<53.1 36 26 9.5 9.1 0.io NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY ****** CAYUGA LAKE INI.ET,ITHACA DAILY REPORT 10/25/87 TEMPERATURE:WIND:PPT SPEED:VEL DIRECTION: HI AVE LO HI AVE AVE AVE sTDV TOTAL 01:00 !46 45.4 45 13 5.6 i1I . i f 1I 268 w 34 t.~.!11 Cd 1 O 11 O 1i 02:00 !46 45.7 45 11 5.4 4.0 239 wsw 41 0.00 ! 03:00 !46 45.4 45 10 4.4 3.4 256 wsw 40 0.00 ! 04:00 !45 44.5 44 10 6.2 5.9 187 8 18 0.00 ! 05:00 !45 44.3 43 17 8.6 7.8 2c?5 W 25 0.00 ! 06:00 !45 44.1 44 19 10.4 9.6 291 WNW 23 0.00 ! 07:00 !44 43.7 43 11 5.9 5.1 267 W 29 0.00 ! OS:00 !44 43.7 43 9 5.6 5.0 266 W 25 0.00 ‘09:00 !44 44.1 44 11 6.6 6.1 283 WNW 22 0.00 ! 10:00 '45 44.5 44 16 9.8 9.3 272 W IS 0.00 ! 11:00 !47 45.7 45 21 14.6 14.1 279 W 14 0.00 ! 12:00 !48 46.5 46 22 15.0 14.2 297 WNW IS 0.00 ! 13:00 !48 46.8 46 21 15.6 14.6 312 NW 20 0.00 ! 14:00 !48 47.6 47 25 17.9 17.4 320 NW 14 o.oo ; 15:00 !48 48.0 48 21 16.0 15.6 324 NW 14 0.00 ! 16:00 .!48 47.a 48 21 16.4 16.1 329 NNW 10 0.00 ! 17:00 !48 46.8 46 18 15.4 15.3 323 NW 7 0.00 ! IS:00 !46 44.6 43 15 8.6 3.4 302 WNW 15 0.00 ! 19:00 !43 43.0 42 10 7.3 7.2 287 WNW 9 0.00 ! 20:00 !43 41.0 3S 7 4.6 2.7 254 WSW 53 0.00 ! 21:00 !38 36.7 35 7 5.2 5.1 163 SSE 11 0.00 ! 22:00 !36 34.S 34 7 5.5 5.3 162 SSE 13 0.00 ! 23:00 !34 33.1 32 7 5.6 5.5 167 SSE 12 0.00 ! 24:00 !33 32.7 32 9 6.8 6.6 156 SSE 13 0.00 ! 48 43.3 32 i1I in I CM i 9.3 li CO 11I1 il O 1  1 O 1 PJ 11i NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY CAYUGA LAKE INLET,ITHACA DAILY REPORT 10/26/87 PPT TOTAL ;TEMPERATURE: HI AVE LD WIND: SPEED:VEL AVF. DIRECTION: HI AVE AVE STDV 01:00 !33 ;32.0 31 9 6 7 6 5 158 SSE 12 0.00 1 02:00 !-7-32 31 .6 31 9 7 8 7 8 150 SSE 7 0.00 1 03:00 !L-;;32 '31.0 31 9 7.5 7.4 142 SE 11 0.00 1 04:00 !32 30.6 30 10 7.1 7.0 154 SSE 13 0.00 I 05:00 !31 30.6 29 9 8.0 7.8 154 SSE 11 0.00 1 06:00 !30 29.5 29 8 6.1 5.9 162 SSE 15 0.00 1 07:00 !30 29.1 28 11 7.9 7.8 143 SE 11 0.00 1 08:00 !-32 31.2 30 9 8.3 8.3 143 SE 8 0.00 1 09:00 !L-%37 34.9 32 9 7.0 6.8 .136 SE 13 0.00 a 10:00 !44 40.0 37 7 5.0 4.8 150 SSE .15 0.00 i 11:00 !50 47.3 44 5 2.5 "2.2 163 SSE 30 0.00 i 12:00 !51 49.0 46 5 2.7 2.1 338 NNW 39 0.00 i 13:00 !55 52.6 49 6 3.0 1.3 147 SSE 61 0.00 i 14:00 !56 55.0 54 10 5.5 4.6 159 SSE 32 0.00 i t5:00 !56 55.6 55 9 6.9 6.6 160 SSE 13 0.00 i 16:00 !56 55.2 55 13 9.3 8.9 132 SE 15 0.00 i 17:00 !55 54.0 50 .13 8.3 8.0 138 SE 15 0.00 t IS:00 !50 47.5 46 6 3.3 2.9 168 SSE 29 0.00 i 19:00 !45 44.0 43 6 4.6 4.4 174 S 16 0.00 i 20:00 !5 43 42.1 40 8 6.2 6.1 160 SSE 12 0.00 i 21:00 !43 42.1 41 9 7.8 7 6 154 SSE 12 0.00 i 22:00 !44 42.0 41 8 5.7 5.2 154 SSE 24 0 00 i 23:00 !42 41.4 40 9 6.4 6.4 157 SSE 8 0.00 i 24:00 ! V-:+ <45 43.3 41 11 8.7 8.6 167 SSE 7 0.00 i 7 56 41.3 28 6.4 6.0 wwe mw m 0.00 NOTES:W?:z DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER -HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE O MISSING OR BAD VALUES,REPRESENTED BY ****** 1 CAYUGA LAKE INLET,ITHAC A DAIL Y REPORT 10/27/87 TEMPERATURE WIND:PPT SPEED:VEL DIRECTION HI AVE LD HI AVE AVE AVE STDV TOTAL 01 00 !43 1I 4s 1 PJ I1 PJ 11 41 11 1 CO 1  I VI ii11 CO 1  1 CJ 1! . I1111 s 10 0.00 ! 02 00 43 42.6 41 9 7.2 7.0 166 SSE 10 0.00 ! 03 00 !44 42.0 40 15 9.8 9.7 160 SSE 8 0.00 ! 04 00 !45 44.4 44 20 16.0 15.9 154 SSE 7 0.00 *05 00 !44 44.1 43 16 13.2 13.0 158 SSE 9 0.00 ! 06 00 !44 43.4 43 14 11.1 11.0 168 SSE 9 0.00 ! 07 00 !44 43.9 43 17 14.9 14.8 153 SSE 5 0.00 ! 08 00 !46 44.5 44 18 14.5 14.2 149 SSE 11 0.00 ! 09 00 !49 47.0 46 18 12.5 12.3 159 SSE 10 0.00 ! 10 00 !50 49.3 49 23 18.0 17.7 151 SSE 10 0.00 ! 11 00 !51 50.5 50 24 18.4 18.0 154 SSE 12 0.00 ! 12 00 !51 50.8 51 25 18.0 17.8 152 SSE 10 0.00 ! 13 00 !52 51.2 51 24 19.4 19.2 152 SSE 9.0.00 ! 14 00 !53 52.3 52 25 19.2 19.0 154 SSE 9 0.00 ! 15 00 !53 52.7 52 22 14.2 14.0 153 SSE 11 0.00 ! 16 00 !53 53.0 53 .16 10.4 10.1 167 SSE 13 0.00 ! 17 00 !53 51.4 50 15 10.2 10.1 161 SSE 9 0.00 ! 18 00 !50 49.5 49 8 6.2 6.0 154 SSE 12 0.06 ! 19 00 49 49.0 49 9 5.3 4.4 155 SSE 32 0.08 ! 20 00 !49 48.4 48 1 0.9 0.1 271 w 78 0.10 ! 21 00 !49 48.3 48 5 2.6 2.0 317 NW 38 0.12 ! 22 00 !48 47.5 47 12 4.4 3.9 346 NNW 29 0.18 ! 23 00 !48 47.0 46 12 8.2 8.0 321 NW 13 0.14 ! 24 00 !46 111 4s 1 Ui 1  1 CO i 45 7 4.7 4.6 316 NW 11 0.10 : 53 47.5 40 li1 ID i rd 1 11.2 10.9 0.78 NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY ****** CAYUGA LAKE INLET,ITHACA DAILY REPORT 10/28/37 TEMPERATURE:.WIND:'RPT SPEED:>VEL DIRECTION: HI +===-==== AVE LO HI AVE ;'AVE AVE J STDV TOTAL :=:==^=:=:====:===^^ 01:00 !46 45.7 45 8 .6.0 5.9 314 NW o.os j 02:00 !46 45.3 '45Z 11 r 8.2 8.1 310 NW 7 '0.04 ! 03:00 !46 45.4 45 17 10.5 10.3 319 NW 11 O.06 ! 04:00 !46 45 2 45 19 <14.0 13.9 319 NW .d 0.06 ! 05:00 !45 44.6 .44 14 12.5 12.4 316 NW 7 0.04 ! 06:00 !;45 44.6 '.44 12 10.6 10.5 318 NW 7 0.00 ! 07:00 ;T 45 44.1 44 ;11 7.0 '6.9 312 NW 10 0.00 ! OS:00 !45 44.2 \;44 11 7.8 7.'7':.299 WNW 10 0.00 ! 09:00 !47 45.0 44 17 9.4 9.1 317 NW 14 0.00 ! 10:00 !48 46.8 46 20 15.7 15.4 323 NW 11 .0.00 ! 11:00 !46 45.6 45 19 12.8 12.6 312 NW 9 0.02 ! 12:00 !45 44.6 44 17 12.0 11.7 305 NW 13 0.00 ! 13:00 L 46 44.8 44.15 \9.3 9.6 326 NW 14 0:02 ! 14:00 !47 46.3 46 17 13.7 13.6 328 NNW 7 0.00 ! 15:00 *47 46.0 45 17 11.3 11.1 338 NNW 10 0.00 ! 16:00 !47 46.4 46 10 -6.4 6.2 323 NW 13 0.00 ! 17:00 !47 ;46.6 46 11 Y<7/7 .7.4 320 NW 15 0.00 ! IS:00 !46 43.2 41 7 Y 3,6 2.3 273 W 49 0.00 ! 19:00 !41 40.1 L 39 6 3.6 :3.4 161 SSE 16 0.00 ! 20:00 !39 38.5 38 8 6,0 5.9 158 SSE 9 <0;00 ! 21:00 !38 36.9 36 9 5.0 4.9 157 SSE 14 0.00 ! 22:00 !37 36.6 36 9 6 7 6.4 156 SSE 17 0.00 ! 23:00 !37 ,36.1 36 10 7.4 L 7.2 157 SSE 13 0.00 L 24:00 37 ;34.s ;34 9 J 4-7 4.3 a 173 S 25 0.00 ! 'm^.mm >mmm .m.mm mm :—- -——.—.—'-^2 ——HA*——-- - -_-r .———1.MN MN MN MM -M MM MM MM —MM _X_“MM MM MM MM MM MM MM mw —r ——w —w —MM MN «M«-M -M MM M.MM MM —MM MM MM —MM M ’f NOTES: 48 43.2 ;34 20 S.S '8.6 0,32 DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME ) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER-HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY ****** CAYUGA LAKE INLET,ITHACA DAILY REPORT 10/29/87 TEMPERATURE:WIND:-L PPT 4 <SPEED:--L VEL DIRECTIDN:.<<? HI +■=====—=—= AVE LO HI AVE lave AVE 7 ;STDV TOTAL 01:00 ’35 33.8 33 6.6 167 SSE 10 0.00 !; 02:00 !35 33.2 32 S ;J 5.6 5-4 171 S:L,15 0.00 ! 03:00 !35 34.4 34 :9 6.6 6.5 165 SSE <11.:0.00! 04:00 !L 34 33.7 '33 :9 ;6.4 158 SSE f 0.00 ! 05:00 !35 34.1 33 12 8.7 ...8.5 <131 SE 12 0.00 ! 06:00 !35 34.2 34 -9 6.3 /5.9 155 SSE :20 0.00 ! 07:00 !35 33.9 33 11 ;/■7.2 L ,6.:9;L 171 S 16 0.00 ! 08:00 !36 34.9 34 10 ;7.3 .7.1 SE L 42 0.00 ! 09:00 !39 37.2 36 10 ,\7.3 7.i 151 SSE 13 0.00 10:00 !43 40.7 39 10 7.0 6.9 157 SSE 10 0.00 ! 11:00 !45 44.4 43 14 7.1 5.i 171 S 7 43 0 00 ! 12:00 !45 44.9 44 .10 -■7/5-.245 WSW 0 00 ! 13:00 !45 44.2 44 13 7.4 6.3 254'WSW :;'-22'0 00 1 14:00 !44 44.1 44 11 5.9 4.8 244 WSW 36 0.00 ! 15:00 !45 44.3 44 16 ;L 9.8 .9.5 273 H 13 0.00 ! 16:00 !45 44.6 44 15 8.6 8.4 '15L 0.00 ! 17:00 !45 44.9 44 :10 6.4 5.9 264-W 21 0.00 ! 18:00 !44 41.4 39 --5>:3.8 3.7 210 SSW '14 0.00 ! 19:00 !41 40.2 39 6 4.6 4.5 199 SSW 13 0.00 ! 20:00 !42 41.3 40 .7 4.6 3 6 208 SSW ...38 0.00 ! 21:00 JL 41 >.40.6 40 6 3.1 .L 1.5 102 ESE 58 0.00 ! 22:00 !40 39.4 38 7 9 6.2 5.7 124 ESE 23 0.00 ! 23:00 !40 39.3 39 10 8.1 7.8 124 ESE 17 0.00 ! 24:00 !39 36.8 36 1 s 4.6 152 SSE 20 0.00 ! M«t tttv'*Mt Mt ---.-J —MOt ttM ^Btt tMO ^ttt ^Mt Mttt twttMtMt—tt m»Mt ttt;“M>Mt Mt Mt M*Mt Mt 45 39.2 32 16 >;J6?:5..6.1 0.00 NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME ) TEMPERATURE IS MEASURED IN DEOREES F,WIND SPEED IN MILES-PER -HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING DR BAD VALUES,REPRESENTED BY CAYUCO >LAKE INLET,ITHACA DAILY REPORT STDV 10/30/ PPT TOTAL 87 TEMPERATURE:WIND: SPEED:.VEL AVE DIRECTION AVEHIAVEL.D HI AVE 01:00 !37 36.7 36 7 4.8 i11 . i11 157 SSE 21 0.00 1 02:00 !37 35.8 35 10 7.5 7.3 157 SSE 15 .0.00 1 03:00 !36 34.8 34 8 5.9 5.6 154 SSE 18 0.00 04:00 !35 34.8 34 10 8.4 8.3 '137 SE 12 0.00 Y 05:00 !35 34.3 34 9 7.0 6.9 157 SSE 12 0.00 i 06:00 !35 34.6 34 9 7.3 7.2 139 SE 12 0.00 t 07:00 !36 35.6 35 11 8.9 8.8 150 SSE 11 0.00 t 08:00 !38 36.7 36 11 10.0 10.0 150 SSE 5 0.00 i 09:00 !40 39.3 38 11 9.2 9.1 154 SSE 7 0.00 i 10:00 !44 42.1 40 14 9.8 9.8 159 SSE 8 0.00 i 11:00 !46 45.0 44 14 11.4 11.3 163 SSE 9<0.00 i 12:00 !49 47.7 46 16 12.4 12.1 163 SSE 13 0.00 13:00 ’49 48.9 48 20 14.5 14.2 160 SSE 10 0.00 i 14:00 !50 '48.9 49 20 14,9 14.8 152 SSE 9 0.00 i 15:00 !51 50.0 49 19 14.4 14.2 156 SSE 8 0.00 i 16:00 !51 50.5 50 17 14.1 13.9 153 SSE 10 0.00 t 17:00 !51 50.3 50 17 13.6 13.5 150 SSE 8 0.00 18;00 ’50 49.5 49 15 11.3 11.2 144 SE 9 0.00 i 19:00 !49 48.7 48 12 9.6 9.4 144 SE 10 0.00 i 20:00 !49 48.6 48 13 10.4 10.2 159 SSE 10 0.00 i 21:00 !50 49.7 49 15 9.9 9.5 180 S 17 0.00 i 22:00 !50 49.8 49 11 8.7 8.4 200 SSW 13 0.00 i 23:00 !51 49.7 48 10 6.3 6.0 214 SW 20 0.00 i 24:00 !50 48.2 46 5 3.4 1.8 114 ESE ii ui I UI 0.00 i 51 43.8 34 20 9.7 inth 0.00 NOTES: DATA REPORTED AT THE END OF THE HOUR (ALWAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED IN DEGREES F,WIND SPEED IN MILES-PER -HOUR, WIND DIRECTION IN DEGREES,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY ***#«« ?cAyugA lake INLET?/11 TEMPERATURE: HI AVE ''J.'—T-i——MM———————M ‘HAG/ LO A DAILY REPORT WIND: DIRECTION: AVE STDV 10/31/87 PPT ,/-Y TOTAL /? SPEED:; HI AVE VEL AVE <01:00 !51 49.7 46 13 7.3 6.7 291 WNW ?33 0.00 !? ,02:00 !49 46.8 44 6 3.2 1.2 248 WSW 64 ?o.oo .; —/J 03:00 ‘45 42.9 42 7 5.1 5.0 162 SSE 14 ':0/00 !? 04:00 !43 42.3 '-42 :-a /4.8 4.6 167 SSE 16 :0.00 ! 05:00 !46 43.7 43 6 3.2 1.7 233 SW 56 0.00 ! 06:00 !48 47.2 46 13 8.9 8.3 305 NW 9 0.00 ! 07 :00 !47 46.6.46 14 10.5 10.4 302 WNW 8 <0.00 ! 08:00 !47 46.3 46 15 11.2 11.1 304 NW 9 0.00 !; 09:00 !48 47.1 46 19 '15.3 15.1 324 NW 9 0.00 ! 10:00 ‘49 47.a 47 18 ?14.5 14.4 334 NNW 8 0.00 ‘11:00 !50 48.9 43 13 '10.0 9.8 325 NW 13 <0.00 ! 12:00 !51 49.6 48 13 9.6 ?9.1 343 NNW 17 0.00 ! 13:00 !52 50 2 49 14 10.0 9,8 344 NNW 12 0.00 !/? 1 14:00 !51 50.4 50 12 8.6 3.5 352 N ;"';//'/'10 0.00 1 15:00 !.52 51.1 50 12 .8.6 8.5 338 NNW 10 0.00 ! 16:00 52 51.7 .51 ..8 5.7 ?//5.;5/?320 NW 14 /0.00 ! 17:00 !51 ..49.9 47 ./7T 5.9 5.3 293 WNW 14 0.00 ! 18:00 48 /.46.8 44 '7 3.3 310 NW 69 >/0.00 !/ 19:00 !:44 42.4 41 5 /4.1 4.0 168 SSE 12 0.00 ‘' 20:00 V 42 40.6 39 ---■'■7.5.2 5.0 161 SSE 15 i 0.00 ! 21:00 !41 40.0 39 10 6.6 6.5 154 SSE 12 0.00 ! 22:00 :!40 39.4 39 10 6.8 6.7 155 SSE 10 0.00  23:00 !39 37.7 36 ;9 6.4 6.2 162 SSE 13 0.00 ,! 24:00 t;/>/38/, .^.^.MM—M-MM—MM- 37.P ;;36 _6.3 J'-/6;.-2<\148 SSE 12 0.00 L MMMM MM MM MM /■ 52 M.MMMMMMMM MMM 45.7 36 19 7.6 /.'Xi? MMMMMM —MMMM —M -f ... 0.00 NOTES: DATA REPORTED f ¥T THE END OF The HOUR (ALUIAYS EASTERN STANDARD TIME) TEMPERATURE IS MEASURED JIN DEGREES F,WIND SPEED IN MILES-PER -HOUR, WIND DIRECTION IN DEC^REE'3,PRECIPITATION IN INCHES. THERE WERE 0 MISSING OR BAD VALUES,REPRESENTED BY J .;-/ Interim Report on WATER MOVEMENTS IN THE SOUTH END OF CAYUGA LAKE submitted to Engineering Department, City of Ithaca by William F.Ahrnsbrak Professor of Geoscience' Hobart &William Smith Colleges Geneva,New York,14456 June 1985 As .per the letter of 14 August 1984 from me to Ms Barbara Eckstrom and cited in the Contract between myself and the city of Ithaca as "Schedule A",an Aanderaa Instruments,Model RCM-4 Savonius Rotor current meter was emplaced,in Cayuga Lake on 13 November,1984.The location of the mooring to which the meter was attached is shown,in Figure 1.The depth of the water at that location is approximately 12 feet The meter was positioned approximately 1 meter above the bottom and was set to sample water temperature and speed and direction of water movement at a 30 minute time interval.The recording unit from the current meter was recovered by divers on 11 may 1985 and without moving the current meter itself,a new recording unit fitted with a fresh battery and recording tape was attached to the instrument for continuance of the monitoring program through the summer.The purpose of this report is to set forth prel imi nary anal ys i s of the data acquired in the winter portion of the monitoring program. The temperature,speed and direction records obtained are plotted as a function of time in Figure 2.From inspection it appears that the temperature and direction recordings are com¬ plete and credible..It is clear,however,that some interrup¬ tion occurred in the "speed"portion of the recording.Theinstrument:seems to have functioned properly for about one day following deployment,but for the next six week period the tape contains only zeros in the speed channel of the recording.During the next two or three weeks there are occasional "bursts"of non-zero velocity-,but these occasions are inter¬ spaced with extended periods of time during which the speed channel again returns to unrealistic zero values.After about the ninth week of the record the values appear realistic (i.e. consistent with my expectations)and whatever the cause of thespuriouszerovalues,it seems to have sei f -cor rected .I sur¬ mise that since the problem appears to have corrected itself by the end of the record,the problem may have been caused by someforeignobject,perhaps some mass of aquatic plant,becoming entangled in the speed sensor and then slowly being freed. Table 1.Distribution of Speeds Speed Range <1 cm ./sec .1 -5 cm 4 /sec. 5-10 cm./sec.>10 cm ./sec . Number of Occurrences 4707 2222 612 990 In the portion of the recording after the instrument seems to have corrected itself of whatever caused the spurious zero values,the record seems to be comprised of two alternating regimes.There are periodslasting fora period of a day or slightly longer,of speeds in excess of 15^20,even 40 cm.per second.Between these bursts of high speed are periods, 1 asting perhaps two,three,or four days,when the speed isgenerallylessthan10cm.per second,often less than 5 cm. per second.It is my opinion at this time that the periods of high speed are not realistic readings,but are manifestations of oscillatory water movement associ ated wi th periods of high, longer surface waves.Waves with a wavelength longer than about 20 feet will cause water movement down to a depth of 10 f eet ,spi nn i n g the savoniuS rotor speed sensor although there is.actually no net movement of water associated with these waves.If that is the case,then the low water speeds (5 -10 cm.per sec.)should be viewed as the more realistic repre¬sentations of water circulation in the south end of Cayuga Lake. From the plot of current direction (expressed as the direction toward which the water is flowing)in Figure 2 it appears that over the period of the deployment of the instrument,water,at some time/moves toward nearly every point of the compass,with no strong preference apparent.Clearer understanding of direc¬ tional patterns of water movement can be gained from consider¬ation of Tables 2 -6 and Figures 3a,3b,4a,4b,5a and 5b. In Tables 2-6 the directional distribution of water movements are given for various categories of water speeds.In the "occurrences"column for each of the tables,each occurrence of a sample with a given direction is entered as a single entry, regardless of the speed with which the water is moving.In the"transport"column entries of occasions of water movement in a given direction are "weighted"according to the speed with which the water is moving (i.e.a current with a speed of 10cm./sec.is 10 times as significant as a current with a speedof1cm./sec.)and in some sense represents a weighted integralofthewatermovement.These directional distributions aretabulatedforA)all samples in the record,B)all samples with speeds greater than 1 cm./sec.,C)all samples with speed between 1 and 10 cm./sec.,D)all samples with speeds greater than 10 cm./sec.and E)all samples with speeds less than 1 cm./sec. In all of these di stri buti ons there is a relative maximum of occurrence at around 060-080 degrees (magnetic),although this maximum is least pronounced in the directional distribution of a currents with speed less than 1 cm./sec.It appears to be most pronounced in the tabulation of samples with speeds greater than 10 cm./sec.In addition to this strongest relative maximum in an eastnortheasterly direction two other relative maxima can be seen,one in a northwesterly direction, noticeable especially in the "transport"tabulations and diagrams for "all observations"and "all observations with speeds greater than l1 cm./sec."and another relative maximum in a southsouthwesterly direction which can be seen in the otherdiagramsandtables.There are then,three preferred directions of water movement at the current meter mooring in the south end of Cayuga Lake:toward the eastnortheast;towardthethenorthwest;and toward the southsouthwest.Of these three preferred directions,the one toward the eastnortheast is the most persistent and the strongest,and the one toward the southsouthwest seems to be present only under conditions of very slow current speeds. The plot of temperatures for the entire period of the record shows that at the time of the beginning of the record (mid¬ November)temperature at the mooring was about 7 degrees C,that by mid-February the temperature had dropped to about 2 degrees C,with occasional dips to near 0 degrees C,and by the end of the observation period,in mid-May,the temperature hadrisentoabout8degreesC.Short term temperature fluctua¬ tions (of one to two degrees C)persist through the record. These fluctuations are most likely due to water movementassociatedwithexchangeofwaterbetweentheshallownear¬ shore regions and the greater body of the lake caused by changingwindregimes. Further analysis of this data will be presented with the final report from this study when the project has been completed. 12 Figure 2.Temperature and Speed and Direction of Water Movement from Current Meter in the South End of Cayuga Lake,November 1984 -May 1985 Table 2. IBUT ION OF WATER VELOCITIES'X ’ X DIRECTIONAL DISTR (ALL .S AMPLES INCLUDED) DIRECTION OCCURRENCES TRANSPORT XX ...(Magnetic)?Number Percent Number Percent 000-010 200 2.34 391 1.33 010-020 219 2.56 559 1.89 .-.020-030 2 34 2.74 708 2.41 030-040 x 298 3.49 978 3.32 040-050 386 xX^51-;<1646 5.59 050-060 484 5.66 2998 10.18 060-070 :609 7.13 3860 13.11 -/X -070-080 XXX 474 X1 5.55 X-xX,3148 10.7 0 080-090 373 4.37 2375 8.07 090-100 214 2.50 1277 4.34 100-110 120 '1.40 383 1.30 110-120 152 /1.78 I-237 0.80 120-130 165 x 1.93 x 140 0.47130-140 207 2.42 223 0.76 140-150 203 2.38 102 0.34150-160 120 :1.40 91 0.31 160-170 118 1.38 122 0.41170-180 285 a 3.33 225 0.76180-190 X 314 X...3.67 374 1.27190-200 383 4.48 438 .1.49 200-210 'x?352 4.11 a <355 '<X 1.20 210-220 286 3.34 384 1.30 220-230 217 .1.54 X 259 0.88 230-240 222 2.60 201 0.68 240-250 252 2.95 243 0 .82 -—250-260 X 233 2.72 158 0.53 260-270 143 X 1.67 249 0.85 270-280 Ill 1.30 563 1.91 280-290 158 1.85 4 53 1.54 290-300 124 X <X 1.45 946 "3.21 300-310 124 X’;1.45 1045 3.55 310-320 120 <'X 1.40 1249 4.24 320-330 129 X-1.51;;1'x-'aX'3 994 3 .37 330-340 117 X'1.36 781 2.65 340-350 221 2.59 687 2.33-350-360 '178 2.08 588 2.00 Total Number of Samples:8545 Total Transport "Di stance ":29 434 Table 3. DIRECTIONAL DISTRIBUTION OF WATER VELOCITIES (SAMPLES WITH SPEEDS GREATER THAN 1 cm.per sec.ONLY) DIRECTION (Magnetic)OCCURRENCES TRANSPORTNumberPercentNumberPercent 000-010 72 1.87 391 1.33010-020 85 2.21 559 1.90 020-030 98 2.55 708 2.40030-040 112 2.91 978 3.32040-050 167 4.35 1646 5.59 050-060 271 7.06 2998 10.18 060-070 366 9.53 3860 13.11 070-080 294 7.66 3148 10.70 080-090 227 5.91 2375 8.07 090-100 121 3.15 1277 4.34 100-110 51 1.33 383 1.30 110-120 40 1.04 237 0.81 120-130 49 1.28 140 0.47 130-140 67 1.74 223 0.76 140-150 45 1.17 102 0.35 150-160 41 1.07 90 0.31 160-170 50 1.30 122 0.41 170-180 83 2.16 225 0.76 180-190 127 3.31 374 1.27 190-200 154 4.01 438 1.49 200-210 127 3.31 355 1.21 210-220 132 3.44 384 1.31220-230 97 2.53 259 0 88 230-240 74 1.93 201 0.68 240-250 95 2.48 243 0.82 250-260 57 1.49 158 0.54 260-270 45 1.17 250 0.85 270-280 49 1.28 563 1.91 280-290 58 1.51 454 1.54 290-300 83 2.16 946 3.21 300-310 85 2.21 1045 3.55 310-320 90 2.35 1249 4.24 320-330 91 2.37 994 3.37 330-340 70 1.82 781 2.65 340-350 82 2.14 687 2.34 350-360 83 2.16 588 2.00 Total Number of Samples:3838 Total Transport "Distance":29434 Tabled DIRECTIONAL DISTRIBUTION OF WATER VELOCITIES;(SAMPLES WITH SPEEDSBETWEEN 1 AND 10 cm.per sec.ONLY ) DIRECTION (Magnetic)OCCURRENCES Number Percent TRANSPORT Number Percent 000-010 ..6 5 2.28 251 7 2.49010-020 6 1 '.7 2.35 7 229 7 2.29020-030 !7l.L77s ^;l'2.63 ..312 3.11030-040 8 2 2.88 379 3.77040-050 102 3.58 4 53 4.51 050-060 156-5.48 0 699 6.95060-070 218 7.65 1009 10.04070-080 .-L 176 7 6.18 l 8 75 8.70 080-090 122 '4.28 571 5 .68090-100 65 2.28 269 2.67100-110 36 :1.26 121 1.21110-120 7 32 "-TO 1.12 77 ;OL'-O/8'00L.;.0.80120-130 '4 7 V 1.65 107 1.07130-140 63 2.21 136 1.35 140-150 /4 5 <1.58 101 1.01150-160 >'41 1.44 9 0 0.90 160-170 50 1...76 <7 122 1.22 170-180 83 '■ '2.91 225 ‘O 2.24 180-190 126 4.42 0 348 3.46190-200 154 5.41 438 4.35200-210 127 4.46 '-'''355';<L 3.53 ; 210-220 132 4.63 l'384 7 3.82 220-230 91 L:3.40 orD 259 7'7-2.58 230-240 -.'''L Oc 73 .2.56 77 168 0 77 1.67240-250 94 3.30 -'.L^'210 ;l 2.09250-260 55 1.93 115 1.15 260-270 40 1.40 105 l 1.05 270-280 32 <1.12 129 1.29 280-290 43 7 1.51 127 l 1.26 290-300 42 1.47 V .llISS-’'1.54300-310 l.43 7-1.51 .L77 77;162 1.62310-320 ''41 1.44 150 1.50320-330 ll/o.'53 1.86 192 1.91330-340 41 1.43 165 1.64 340-350 63 --2^217 l77.-.l 277 2.75 350-360 -'■'■'670'.2.35 7'7'"2.78 Total Number of Samples:2848 Tota1 Tr a n spo r t "Dis t a nee ":10 0 56 j’'Tabi e 5 DIRECTIONAL DISTRIBUTION OF WATER VELOCITIES (SAMPLES WITH SPEEDS GREATER THAN 10 cm.per sec.ONLY)1 DIRECTION OCCURRENCES TRANSPORT(Magnetic) 000-010 Number Percent 0.71 Number 140 Percent 0.72010-020 18 1.82 329 1 1.70020-030 23 2.32 395 2.04030-040 040-050 ; 30 65 3.03 6.57 .598 1193 fil 3.09 6.15 1- 050-060060-070 115148 11.62 14.95 1 2299 28 50 11.87 14.71070-080 118 11.92 2 273 11.73080-090 105 10.61 1805 9.32090-100100-110 56 15 . 5.65 111--"'' 1.51 1008 262 5.20"11.35 . 110-120 8 :0.81 156 0.81120-130 -0.20 32 0.17130-140 '7 —4 .---":0.40 .87 0.45 -J 140-150 0.00 0 1 0.00150-160 0 0.00 0 0.00160-170 -'iC'o?-I 0.00 01'l:'?rl 0.00 —170-180 0 0.00 0 0.00180-190 1 iM'Oiioi'"ii'i.27 0.14 ,190-200 '/;,0^i'.ll 0.00 0 0.00 200-210 i>0 0.00 1 0 lr 0.00 210-220 1/0 0.00 0 0.00220-230 1-o 111-'o.oo 0 '0.00 230-240 I'll-'0.10 32 0 .17 240-250 '11'1"1\0.10 32 0.17 '1 250-260 '11 2 0.20 42 0.22260-270 -5 -0.50 144 0.74 .270-280280-290 17 1-15 l.-I^'^-ll 1.52 434 326 2.24 1.69 V 290-300 11-4.14 791 '/-'I 4.08 300-310 J 42 -.'1 4.24 883 ;1 4.56 310-320 1 49 '4.95 1099 5.67320-330 30 3.84 801 4.13330-340 29 2.93 616 3 .18340-350 19 1.92 411 2.12 350-360 ;16^,-;---ill 62 309 '1.59 ' Total-Number of Samples:990 TO rt "Dis tan ce":19378 :A A..'’ -C Tabi e 6 cDIRECTIONAL DISTR: (SAMPLES WITH SPEEDS [BUTION LESS TH£ OF WATER VELOCIT IES .N 1 cm,per sec.ONLY ) DIRECTION OCCURRENCES(Magnetic)Number Percent 000-010 128 010-020 -134 020-030 136 030-040 186 040-050 A 219 .:050-060 213 ;060-070 243 070-080 180 080-090 146090-100 93 100-110 69 110-120 112 / 120-130 1 116 130-140 140 140-150 158150-160 79 160-170 68170-180 202180-190 .187 -190-200 229 200-210 225210-220 154 220-230 120 230-240 148 240-250 157 250-260 176 260-270 98270-280 62 280-290 100 ; 290-300 :41300-310 39310-320 i 30 320-330 \A:38 ' 330-340 47 340-350 139 350-360 ,95 "A’. Total Number of Sample 2.72 2.85 2.88 3.95 4.65 4.53 5.16 : 3.82 3.10 1.98 1.46 2.38 2.46 2.97 3.36 1.68 1.44 4.293.97 4.86 4.783.27 2.55 3.14 3.34 3.74 2.08 1.32 2.12 '0.87 0.83 0.64 0.81 1.00 2.95A;2.02 S:>A'--'i:4707 \ Figure 3a.Occurrence Rose for all sanples Figure 3b.Transport Rose for all sanpies 160 TRANSPORT Figure 4b.Transport Rose for samples with speeds greater than 1 cm./sec.only TRANSPORT Figure 5a.Occurrence Rose for samples with speedsbetween1and10cm./sec.only OCCURRENCES -TRANSPORT Final Report WATER MOVEMENTS IN THE SOUTH END OF CAYUGA LAKE MAY -SEPTEMBER,1985 Submitted to Engineering Department City of Ithaca,New York by William F.Ahrnsbrak,Ph.D. Professor of Geoscience Hobart &William Smith Colleges Geneva,New York,14456 February 1986 SUMMERTIME WATER MOVEMENTS IN THE SOUTH END OF CAYUGA LAKE .INTRODUCTION On May 11th,19 85,the recording unit on the Aanderaa ModelRCM-4 current meter moored near the proposed outfall site of the new sewage treatment plant in Ithaca,New York,was re- placed with a recording unit to obtain data ,on water temper¬ ature and current speeds and directions for the summer seasonof1985.Location of the mooring is shown in Figure 1 (the actual mooring was not moved during the replacement of the re¬ cording unit)and is the same as the location of the winter mooring.Winter water movements have been discussed previ- ously,in the "Interim Report on WATER MOVEMENTS IN THE SOUTHENDOFCAYUGALAKE",submitted to the Engineering Department of the City of Ithaca in June of 1985.This report is to present and discuss the data from the summer of 1985. -After recovery of the mooring at the end of September ,1985 ,the data on the tape from the recorder .indicated that the cur¬rent meter operated without malfunction for the entire duration of the summer observation period.Water temperature and cur¬rent speed and direction for the 20+week summer observationperiodareshowninFigure2. THE TEMPERATURE RECORD Temperature,as recorded by the current meter,is plotted as a function of time on the bottommost plot of Figure 2 for the 20+ weeks of the recording period.The flat ,"plateau-1ike",tops on the plot occurring between the 10th and 17th week of the re-;cord are .due ,to the temperature‘s having exceeded the maximum capability of the instrument,approximately 22 degrees Celsius. Early in the 5th week:there is one data point which appears to be a "glitch",appearing on the plot as a spike up to a temper¬ ature in excess of 20 degrees.This is an unrealistic value and merely illustrates that instruments don't always functionperfectly.The rise and then fall of temperature during the last day at the end of the record,in the 21st week,is not indicative of water temperture change,but rather reflects thetemperatureatthesensorastheinstrumentwasremovedfrom the water,exposed to the direct sunshine in the air,and stored for several hours before being opened up and turned of f. The seasonal progression of temperature is apparent.Water temperatures at the instrument are usually between 5 and 10 degrees Celsius in mid May and generally increase until some time in mid August,reaching a maximum in excess of 22 degrees. From around mid August until the end of the record (the end of September)temperatures generally decrease,reaching a value of 2 TEMPERATURE SPEED DIRECTION ( degrees C ) ( cm/sec ) ( toward) 5”V 0 J-1 :*"*’1 1 1 ;—I 1 1 1 1 1 —H :1123456289101112131415161718192021WEEKSITHACR/5UM Figure 2.Temperature and Speed and Direction of Water Movement in the South End of Cayuga Lake,May -September 1985. ' '-lyy y^-'U>'''''^’ll- around 15 degrees in late September;From mid July until early mid Seiptember the temperature exceeds 22 degrees Celsius much of the time although there are interludes during which the tem¬ perature is much cooler ,at one time as low as 7 degrees .The .seasonal progression is not a "smooth one",but rather is com¬ plicated by numerous,relatively short period fluctuations .-These fluctuations are of interest because they are probably hot a manifestation of actual heating and cooling of water,but rather are indicative of the movement of water because on a time scale of a few days or less,water temperature is a nearly conservative property. Perhaps the most apparent set of such fluctuations occurs ap¬ proximately bi-weekly .Marked cooling occurs late in the first week,again at the end of the third week,the end of the 4th week,the start of the 7th week,late in the 8th week,late in the 9th week,the middle of the 11th week,early in the 13th week,early in the 15th week,early in the 16th week,early in the 17th week,and the middle of the 18th week.Because the rates of change of temperature on these occasions are too great to be attributed to radiative heating and cooling ,the temper¬ ature changes must be associated with incursions of colder wa¬ ter from the greater body of Cayuga Lake,probably also coming from deeper in the lake where colder water is found during thesummerseason.These incur s ions of "lake water "probably rep¬ resent fairly complete .flushing of the water in the shallow south end of the lake./I yyy-‘/,^ Another apparent periodic fluctuation in the temperature seriescanbeseenduringthesecondhalfofthesecondweekandcon-, tinuing into the first half of the third week.This appears to be a diurnal (daily )rise and fall of the temperature .Near daily fluctuations in the temperature can also be seen early in the 13th week of the temperature plot and also at the end of the 18th and beginning of the 19th week.These diurnal fluc¬tuations-are likely to be related to di urnally varying winds which,in turn,produce diurnally varying currents in the lake’. Further discussion of these diurnal variations in the currentswillbepresentedlaterinthisreport. currents 1 y-y^y "i’/„^Zyy--': Current speeds at the si te of the moor ing during the summer are very Slow!:(Current speed is plotted as a function of time on the middle plot of Figure 2 and the direction toward which thecurrentisflowingisshownonthetopplot.)Of the approxi¬ mately 10,000 samples recorded,more than 50 percent of them had speed of less than 2 cm/sec and over 80 percent had speed less than 5 cm/sec (approx 0.1 mph).In less than 20 percent of the recorded cur rents was the current speed greater than 5cm/sec .The mean scalar current speed for the 9880 observa¬ tions beginning 7 p.m.on 12 May ,1985 ,was 2.12 cm/sec. 5 The frequency distribution of observed speed is shown in Table1.The mean (vector)current velocity for’those sameobservationshasamagnitudeof0.36 cm/sec and a directiontoward036degrees(true).(One,of course,should not be overly alarmed by the low magnitude of the vector mean velocity--after all,the vector mean velocity of cars in the "Indy 500"is approximately zero!)This means that over the long term,the effective transport of an effluent introduced into Cayuga Lake at the site of the current meter mooring will be, albeit slowly,toward a direction north of northeast. Speed (cm/sec) Number <1 3445 344 1-2 1774 )£3 O 2-3 1727 /"7 > 3-4 1075 4-5 860 5-6 483 6 -7 277 zi 7-8 137 I H Z-7 8-9 58 OX 9 -10 25 6^ 10 -11 8 oM 11 -12 4 co H 12 -16 "0X1 >16 o....zs Arithmetic mean scalar current speed:2.12 cm/sec Vector mean current velocity: Magnitude:0.36 cm/sec Direction (toward): 036 degrees (True) Table 1.Distribution of observed current speeds in the south end of Cayuga Lake during the summer season,1985. 6 The "effective transport directions ",or preferred current di¬ rections are illustrated in Figure 3 which shows the "occur¬ rence"and "transport"roses for all velocities in the first 9880 samples of the record (20 weeks,beginning 7 p.m.,12 May , 1985).(Occurrences and transport are as described in para¬ graph 4 ;of 'the earlier "inter im Report .i ..l .;")./Directional pref erence is seen to be bimodal.The two dominant directionsofwatermovementaretowardthesectorbetween10and40de¬ grees (true)and toward the sector between 170 and 190 degrees(Hereafter all current directions will be specif ied in terms of "the direction toward which the water is flowing and will be given in True direction).The data illustrated in these plots are given in Table 2 Similar "occurrence"and ."transport "roses were constructed for Several "subsets"of the data.The subsets are:/ Observations with 'speeds less than 2 cm/sec. (Plotted in Figure 4,data tabulated in Table 3) These are the currents when the speed is zero or near or below the threshold velocity for the speed sensor on the RCM-4 current meter. All observations with speeds greater than 2 cm/sec. (Plotted in Figure 5,data tabulated in Table 4)< These are the currents when the speed is clearly above the threshold velocity for the current meter. Obser vat ions with speeds greater than 2 but less than 5 cm/sec.(Plotted in Figure 6,data tabulated in Table 5) These are the currents which are above the threshold velocity of the meter but ,in the context of the present data set,are "low"but noh-zero. Observations with speeds greater than 5 cm/sec. (Plotted in Figure 7,data tabulated in Table 6) These are the currents which,in the context of the .present data set,are "high". OCCURRENCES TRANSPORT Figure 3.Occurrence and Transport Roses for All.Currents Recorded at the South End of Cayuga Lake,May -September 1985. 8 Table 2 . DIRECTIONAL DISTRIBUTION OF WATER VELOCITIES (ALL SAMPLES) OCCURRENCES TRANSPORTDIRECTION (True )Number Percent Numbe r Percent 000-010 ’410 4.1 1074 5.1 010-020 603 6.1 1635 7.8 020-030 611 6.2 1806 8.6 030-040 821 8.3 2047 9.8 040-050 49 2 5.0 1193 5.7 050-060 338 3.4 68 7 3.3 060-070 225 2.3 395 1.9 070-080 123 1.2 250 1.2 080-090 128 1.3 206 1.0 090-100 217 2.2 173 0.8 100-110 19 3 2.0 239 1.1 110-120 93 0.9 146 0 .7 120-130 179 1.8 .169 0.8 130-140 178 1.8 265 1.3 140-150 150 1.5 236 1.1 150-160 199 1.0 291 1.4 160-170 319 3.2 516 2.5 170-180 470 4.8 1305 6.2 180-190 512 5.2 1475 7.0 190-200 369 3.7 1046 5.0 200-210 329 3.3 792 3.8 210-220 248 2.5 396 1.9 220-230 173 1.8 368 1.8 230-240 132 1.3 213 1.0 240-250 92 0.9 223 1.1 250-260 116 1.2 314 0.5 260-270 97 1.0 288 1.4 270-280 166 1.7 258 1.2 280-290 153 1.5 281 1.3 290-300 163 1.6 330 1.6 300-310 144 1.4 240 1.1 310-320 171 1.7 312 1.5 320-330 212 2.1 264 1.3 330-340 294 3.0 355 1.7 340-350 377 3.8 564 2.7 350-360 383 3.9 596 2.8 TOTAL 9880 20951 OCCURRENCES TRANSPORT Figure 4.Occurrence an.d Wes-f ©r .Cur rentes Having Speed Less Than 2 cm/sec in the South End of Cayuga EaAe,W'¥-5e,p'te'm4>er 198’5. z -?'■...z ...';./■.z-.;'\ 10 Table 3. D I RECTTONAL DI STR IBUT ION OF WATER VELOC IT IE S '(SAMPLES WITH SPEED <2 cm/sec) DIRECTION (True) OCCURRENCES z TRANSPORT Number Percent .zNumberPercent 000-010 184 3 .5 -z ?7>'zlll<'/7 3.6 7777' 010-020 229 7 ;4i 4 <7-7.’130 4.3 7;7 020-030 237 4.5 z77j;:149 '4.9 030-040 394 7.5 226 7.4 <77z7 7040-050 250 z 4.8 7.134 4.4 . 050-060 203 >i.9*->>-;z 91 3.0 <7 -7' 060-070 147 -7 2.8 44 W"1.5 .77:. 070-080 74 1.4 'Z 39 1.3 080-090 83 77'1.6 K'-v;:7?62<>777-2.0 090-100 184 7z7/3.S'7<63 2.1 :' 100-110 134 7 z 2.6 68 2.2 110-120 60 .-i.i >'7 -:z:58 1.9 7< 120-130 141 7/.2.7 '70 2.3 130-140 115 1.1 7..7-7.89 2.9 140-150 9 2 7 1.7 60 2.0 150-160 124 2.4 .>77 75 '77'2.5 V;.?7 160-170 z;7 191 '77''.3,7''<.7 117 <73'.:97.-7Z7.'< 17 0-180 164 3.1 118 3.9180-190 167 3.2 91 3.0 \77: 190-200 118 z>7 2-.0777-84 2.7 200-210 152 2.9 130 7 4.3 210-220 151 2.9 7 :58 1.9 /' 220-230 .>7 80 >-7 1.5 <7 60 2:0 230-240 86 7 1.6 48 1.6 240-250 -40 7 0.8 29 1.0 250-260 L 43 o.8 7-><'49 f?7>-.1.6 7>' 260-270 26 0.5 36 1.2 270-280 100 .1.9 67 2.2 :280-290 90 1.7 '.65 2.1 290-300 .92 7 ' .1.7 ;'7:'67 A--z;z?7':'2,.2 z- /300-310 83 ...1.6 -.-7 33 >;7'-71<.17-zz;--z 310-320 95 1.8 ...56 '7 7 7 1.8 "■ 320-330 150 7 2.9 7:7 41 777.:.-.1.4 -330-340 215 7'4.1 129 4.3 340-350 267 5.1 7 .170 5.6 350-360 .257 4 -9 ..:z''7z.128 4.2 TOTAL 5219 '..;... /VB;!304.i7.;73 z;77h:^7;;zz;> V. I THACA/SUM 000360 180 000360 180 OCCURRENCES TRANSPORT Figure 5.Occurrence and Transport Roses for Currents Having Speed Greater Than or Equal to 2 cm/sec in the South End of Cayuga Lake,May -September 1985. 12 J;''' .;.1 ''7 -7 Table 4.CC/f'-;.-7\ DIRECTIONAL DISTRIBUTION OF WATER VELOCITIES (SAMPLES WITH SPEED >2 cm/sec) DIRECTION OCCURRENCES ;j TRANSPORT (True)/Number Percent .Number Percent 000-010 010-020 226 4.8 963 ;5.4 .374 .8.0 . '1505 ..8.4020-030030-040 374 8.0 1657 7 "7":9.3 427 9.2 1821 10.2 >040-050 050-060 060-070 070-080 080-090 242 5.2 1059 5.9 7 77'134 2.9 596 3.3781.7 351 2.0 49 1.1 7„210 1.2 45 ....1.0 144 0.8090-100 33 0.7 111 0.6..100-110 'a;-"59 '■1.3 '7 172 1.0110-120 33 0.7 88 0.5120-130 38 0.8 100 0.6 130-140 140-150 A7^,'>6.3 .176 58 1.2 176 1.0150-160 75 1.6 217 1.2 >160-170 128 2.7 399 2.2 170-180 306 6.6 1187 6.6180-190 345 7.4 1384 7.7 190-200 ..251 5.4 7 962 5.4200-210 177 '7-3.8 663 3.7 : 210-220 97 2.1 .339 1.9-220-230 -93 2.0 '308 1.7230-240240-250 250-260 46 1.0 164 0.9 'C;./.-.52 1.1 A 194 '1.1 "73 7.1.6 266 7-.1.5 260-270 71 -7 1.5 "'7^7-252 1.4270-280 66 1.4 7-'/192 1.1\280-290 63 1.4 216 7 '1.2 ' 290-300 \\71 1.5 263 1.5300-310 61 '1.3 206 1.2 ' 310-320 7 76 .7 7-7 256 .7'1.4320-330 62 '7 1.3 223 '1.2330-340 79 ;':;777;i,7 '7'7.<7'v.226 ;7^<>7.1.3 340-350350-360 110 -1.4 394 /7 2.2 126 '■2.7 /'■468 -7 2.6 TOTAL 4661 .17911 14 Table 5. DIRECTIONAL DISTRIBUTION OF WATER VELOCITIES (SAMPLES WITH 2 <speed <5 cm/sec) 3 .v ' DIRECTION (True ) OCCURRENCES Number percent TRANSPORT Number Percent 000-010 156 4.2 541 4.6 010-020 282 7.6 943 8.0 020-030 245 6.6 798 6.8030-040 303 8.2 1002 8.5040-050 169.4.6 563 4.8050-060 94 2.5 287 2.4060-070 50 1.3 160 1.4070-08O 34 0.9 99 0.8080-090 39 1.1 103 0.9090-100 28 0.8 74 0.6100-110 57 1.5 156 1.3110-120 32 0.9 83 0.7120-130 38 1.0 100 0.8130-140 62 1.7 170 1.4 140-150 57 1.5 170 1.4150-160 72 1.9 200 1.7J- -160-170 122 3.3 365 3.1 170-180 230 6.2 741 6.3180-190 270 7.3 928 7.9 190-200 197 5.3 639 5.4 200-210 147 4.0 474 4.0210-220 87 2.3 278 2.4 220-230 89 2.4 282 2.4230-240,38 1.0 117 1.0240-250 40 1.1 117 1.0 250-260 66 1.8 223 1.9 260-270 66 1.8 212 1.8270-280 64 1.7 179 1.5 280-290 56 1.5 173 1.5 290-300 60 1.6 199 1.7300-310 57 1.5 181 1.5 310-320 71 1.9 216 1.8 320-330 52 1.4 160 1.4330-340 76 2.1 210 1.8—340-350 9 4 2.5 301 2.6 350-360 107 2.9 345 2.9 TOTAL 3707 11787 ITHACA/SUM OCCURRENCES TRANSPORT Figure 7.Occurrence .and Transport Roses for Currents Having Speed Greater Than or Equal to 5 cm/sec in the South .End of Cayuga Lake,May -September 1985. 16 Table 6. DIRECTIONAL DISTRIBUTION OF WATER VELOCITIES (SAMPLES WITH SPEED >5 cm/sec) DIRECTION OCCURRENCES TRANSPORT (True)Number Percent Number Percent 000-010 70 7.3 423 6.9 010-020 92 9.6 562 9.2020-030 129 13.5 859 14.0 030-040 124 13.0 819 13.4 040-050 73 7.7 496 8.1 050-060 40 4.2 309 5.0 060-070 28 2.9 190 3.1 070-080 15 1.6 112 1.8080-090 6 0.6 41 0.7 090-100 5 0.5 36 0.6 100-110 2 0.2 15 0.3 110-120 1 0.1 6 0.1 120-130 0 0.0 0 0.0 130-140 1 0.1 6 0.1140-150 1 0.1 5 0.1 150-160 3 0.3 16 0.3 160-170 6 0.6 34 0.5 170-180 76 8.0 446 7.3 180-190 75 7.9 456 7.4 190-200 54 5.7 323 5.3 200-210 30 3.1 189 3.1 210-220 10 1.0 t 61 1.0 220-230 4 0.4 27 0.4 230-240 8 0.8 48 0.8 240-250 12 1.3 77 1.3 250-260 7 0.7 43 0.7 260-270 5 0.5 40 0.7 270-280 2 0.2 12 0.2 280-290 7 0.7 43 0.7 290-300 11 1.2 69 1.1 300-310 4 0.4 26 0.4 310-320 5 0.5 40 0.6 320-330 10 1.0 63 1.0 330-340 3 0.3 16 0.3 340-350 16 1.7 93 1.5 350-360 19 2.0 124 2.0 TOTAL 954 6123 17 In the near-zero speed roses one can see that any directionalpreferenceislessmarkedthanineitherthe"all value"roses or in any of the roses which include only speeds greater than 2 cm/sec.In the near-zero roses the 170-190 preference is very weak,the 10-40 preference is weaker than in any of the otherroses,and a pref erence appears to exist in the 330-360 degree sector. In all of the rose plots which include only speeds greater than 2 cm/sec the distribution is clearly bimodal ,with the two pre¬ferred directions being toward the 10-40 degrees sector and to¬ ward the 170-200 degrees sector.This bimodal distribution is most pronounced in the case of speeds greater than 5 cm/sec,the highest speeds in the record. In order to more clearly examine the significance of the pre¬ferential water movement toward approximately 30 and 180 de- :grees,a series of "progressive vector "plots of varying dura- .tion was prepared.In a progressive vector plot the successive y observations of current speed and direction at a f ixed point "(at our mooring)are assumed to be the successive speeds and ’directions /of a given parcel :of water.The resulting "tra¬ jectory"is not fully accurate because once a parcel has movedawayfromthemeasurementsiteitmaynolongerhavethesame speed and direction of movement as the water passing the re- /cording instrument.Additionally,a parcel of water cannot flow 'south fromthe mooring for 2 or 3 km.Nonetheless,this tech¬ nique does provide a synthesis of the water movements in a lake which provides some insights into the nature of the actual movements.7 ....Figure 8 is the progressive vector plot for the first 75 days of the record,beginning day number 132 (May 12th is day number .'</:'131).The numbered "x's"represent the position of the "given" parcel of water each successive day.After 75 days of "move¬ ment",the parcel is located approximately 18 km NNE of its initial'position.Because of diff iculties of resol ution causedbythescaleofthisfigure,selected intervals of this 75 day '/'period.'.are.shown in Figures 9 -12. Figure 9 shows days 132 through 154.During the first 10 days the motion is generally southerly,but with one "journey"to¬ ward the northwest and another toward the northeast.The sec- j ond ten days (10 -19 )show movements generally northeasterly,... but with a 5 day period during which the water movement is very slow and with no persistent direction.This "stagnant period" is shown in expanded scale in Figure 10,in which the positions of the parcel at the end of days 1,2,3,4,5 and 6 are all...seen to be within 1 km of each .other.,.' The progressive vector plot for days 153 -175,shown in figure 11,shows first movement generally toward the northeast (days 1-6 ),followed by a looping around to flow generally toward thenorthwest(days 9 —22 ).During the 9 day period,beginning day 18 .170 (days 6 -15 in Figure 12)current directions were persist¬ ently toward the northeast.Following day 186 currents Swing .souther1y for about three days and,af ter that ,flow persist- ently toward the north and northwest for 11 days (days 19-30inFigure12). Figure 13 shows the progressive vector plot for the second halfoftherecord,75 days beginning day number 19 5.The pattern is one of periods of around 10 days of relatively persistent water movement toward the north (sometimes toward the north¬ west,sometimes toward the northeast)between Which there occurinterludesof5to10daysdurationduringwhichwatermove¬ ments are very sluggish,with no particular direction preva¬ lent.Figure 14 shows a 10 day period,beginning day number 195 in which water movements generally are persistently toward the northeast.The period between day number 203 and 215,il¬lustrated in Figure 15 shows that during this time water move¬ ments oscillate back and forth between northeasterly flow for about 2 days followed by southwesterly flow for about 2 days. Beginning on day 212,as illustrated in Figure 16,Water moves relatively persistently toward the north-northeast for a periodofabout5days.Figure 17,however,shows that around day number 226 a "sluggish period"begins and for the next five days the water "wanders around"in a seemingly nearly randompatternafterwhich,beginning on day 231,the water moves southerly for two days and then reverses to move northeasterlyforfourdays." Figure 18 shows the progressive vector plot for the last 35 days of the summer observation per iod ,beginning on day 235.During this period water movements are once again sluggish and with no prevalent direction for the first 16 days followed by a ten day period during ’which the water movement is persistently toward the north-northeast.During the last ten days of this .^period the water again "just sort of hangs around",with no preferential direction apparent.Figure 19 shows the first 17daysofthatfinal35dayperiodinmoredetailandfigure20 shows an even more detailed depiction of the water movements in the 6 day period between day 245 and day 251,during which timethe"total movement"of a water parcel is less than’two Km. During the 10 day period following day number 250 the water-once agai n moves quite persistently toward the north-northeast, illustrated in figure 21. V'V’T’Y'Y 'Y'"'/V ,Y;Y<V/-■'«--.Y.''"’/'a Y\' r \The progressi ve vector plot for the last 10 days of the summer record is shown in figure 22.After initial movement toward the northeast,water movements are generally southeasterly and then southerly for the next Week,followed by a return to :north-nor theasterly flow dur ing the last,two days of therecord./Y ’’"Y :Yr <"r ; 19 ITHRCA/SUM Beginning Day No.132 IKm:। Figure 8.Progressive Vector Diagram for 75 Day period beginning May 12,1985 in the South End of Cayuga Lake. 20 ITHACR/SUM Bog I nn I ng Day No .132 21 ITHACA/SUM Beg Inn I ng.-Day No.143 Figure 10.Progressive Vector Diagram for 7 day period beginning May 23,1985 in the South End of Cayuga Lake. 22 ITHRCR/SUM Beginning Day No .153 Figure 11.Progressive Vector Diagram for 22 day period beginning June 2,1985 in the South End of Cayuga Lake. 23 ITHRCR/SUM Beginning Day No.170 N IKm Vector Diagram for 30 day period in the South End of Cayuga Lake. Figure 12.Progressive beginning June 19,1985 Figure 13.Progressive Vector Diagram for 75 day period beginning July 14,1985 in the South End of Cayuga Lake. 25 1 THRC A/SUM Beg I n n I n g Day Ns .1If 10 8 N D i a gram f or 10 day period South End of Cayuga Lake. *«>{ 1K«:* Figure 14.Progressive Vector beginning July 14,1985 in the *f'V ”A*;*-r »« 26 ITHACA/SUM Begi nni ng Day No .203 N A Figure 15.Progressive Vector Diagram for 12 day period beginning July 22,1985 in the South End of Cayuga Lake. 27 ITHACA/SUM Beginning Day No,211 Figure 16.Progressive Vector Diagram for 11 day period beginning July 30,1985 in the South End of Cayuga Lake. ITHACA/SUM Be g l nn I ng Day No .220 Figure 17.Progressive Vector Diagram for 17 day period beginning August 8,1985 in the South End of Cayuga Lake. 29 ITH AC A/SUM Beginning Day No 235 N IKm Figure 18.Progressive Vector Diagram for 35 day period beginning August 23,1985 in the South End of Cayuga Lake. 30 ITHACA/SUM Beginning Day.No.235 IKm:* Figure 19.Progressive Vector Diagram for 17 day period beginning August 23,1985 in the South End of Cayuga Lake. 31 ITHRCA/SUM Beginning Day No,245 1K»: _ —-—. Figure 20.Progressive Vector Diagram for 6 day period beginning September 2 ,1985 in the South End of Cayuga Lake. 33 ITHACA/SUM Beginning Day No.260 IKa:< Figure 22.Progressive Vector Diagram for 10 day period beginning September 17,1985 in the Sohth End of Cayuga Lake. 34 DIURNAL VARIATIONS IN THE CURRENTS In addition to the evidence for diurnal fluctuations in the water movement seen in the temperature plot in figure 2 (de¬ scribed in an earlier section of this report),a further ;sug¬ gestion of the existence of diur nally varying currents wasnotedduringtheactualplottingoftheabovedescribedpro¬ gressive vector diagrams.In many cases the pen on the X-Y plotter used to construct the plots sometimes seemed to nearly stop moving.These pauses occurred about the time that the "x" and the number were being plotted to indicate the end of a day. This pause of the pen was longer than necessary in terms of "computing"and "handshaking"between the computer and the plotter would require.In order to investigate this "midnight current pause",which could be related to the apparent diurnal periodicity noted in the temperature record (described in an earlier section of this report),a series of plots was con¬ structed in which speed and direction of water movement areplottedasafunctionoftime,but with the time axis greatlyexpandedoyerthatusedinfigure2.The resulting series oftwo-week plots of current speed and direction are shown infigures23through33.?''''V / ; From these plots it is strikingly clear that dur ing most nights (the small "o's"at the tick marks on the horizontal axis rep¬ resent local midnight)current speed drops to near-zero or zero for a period of several hours.This "midnight pause"in the current speed is more noticeable and longer at some times thanothersbutobviouslyoccursonmostdays.A directional mani¬ festation of this diurnal periodicity in current velocity is not immediately'apparent.' SPEED ( cm/sec T- , D I RECTION ( t o ward)360 220 090 000+ DRY S (Be g I n n I n g D a y N oITHRCR/SUM 20 18 16 14 12 10 8 6 4 2 0*0 0 0 0 0 0 0 0 0 0Yr—-?^2^;4^,:?5 ;6 _8 <'^9'T;?‘-10 0 0 0 0 12 13 14 > 132) Figure 2 3.Speed and Direction (toward)of Water Movement in the South End of Cayuga Lake for Two Week Period Beginning May 12,1985 , wm Nouoayia [oss/woj a32ds DAYS (Beginning Day No.145) Figure 24.Speed and Direction (toward)of Water Movement in the South End ofCayugaLakeforTwoWeekPeriodBeginningMay25,1985. SPEED ( c m/se c ) D I R E C T I 0N . ( t o ward ) 6 DAYS (Beginning Day No .1 58 ) ITHACR/SUM 20’ 18’ ;16; 14' 12; io- 8‘ Figure 25.Speed and Direction (toward)of Water Movement in the South End ofCayugaLakeforTwoWeekPeriodBeginningJune7,1985. 4' 2 j o ''0'' '0 0*',0 '■■■■-0 :/■:o O'-'/;.4'0 0 0 -'<■;a2;''3 4 8 9 10 1112 13 14 SPEED ( c m/se c ] ? < D I RECTION (toward]360- 270 180 090 ooo*- 6' 0 o o oo"0 p o 00 DAYS (Be g I n n I n g Day No .ITHRCR/SUM 4 2 20' 18; 16' 14' 12' Figure 26.Speed and Direction (toward)of Water Movement in the South End of Cayuga Lake for Two Week Period Beginning June 19,1985.;,, 10 8 12 13 14 1 70 J/''--? r/r-":'2 ?-,'-'3 4 5 6 7 8 9 10 11 0 0 0 P 0 0 8E SPEED, (cm/sec) DIRECTION (toward) v :iOt A A A।nh.i tin,in 0 00411 DAYS (Beginning Day No .1 83)ITHRCR/SUM 6 4 2 0 20" 18" 16” 14.. 12" 10" 8" o 10 0 0 0 12 13 14 0 0 0 0 1 2 3 0 0 0 0 5 6 7 8 9 Figure 27.Speed and Direction (toward)of Water Movement in the South End of Cayuga Lake for Two Week Period Beginning July 2,1985. 39 SPEED (cm/sec) DIRECTION(toward) 20 18 16 14 8- 6 ' 4- oo00000 0 0 4 DRYS (BeginningITHRCR/SUM 2- 0 12" ID" 1 1 1 2 195) 2 3 o 13 o 14 0 0 10 Day No 5 6 o o 7 8 9 Figure 28.Speed and Direction (toward)of Water Movement in the South End ofCayugaLakeforTwoWeekPeriodBeginningJuly14,1985. 40 SPEED ( cm/sec ) V DIRECTION (toward)360 270 180 090 6" oo 0 0 00o0 DAYS (Beg Inning Day No .208)ITHACA/SUM 000+— Figu re 2 9 .Speed and Direction (toward)of Water Movement in the South End of Cayuga Lake for Two Week Period Beginning July 27 ,1985. 8 9 10 1112 13 14 o 0 A<a ;q p o 20; 18 16:- 14- i2- :-io^ 8' '<>4" 2' SPEED ( cm/sec) rAyArA/AlHRECTION (toward)360- Am270 180: AM090 000^ 12 10 8" 6" 4 2 o 13 ITHACA/SUM South End of 20  18' 16 14 :.o 4 A Figure 30.Speed and Direction (toward)of Water Movement in the Cayuga Lake for Two Week Period Beginning August 8 ,1985 . o :o 14 ;■0 '0 0 V-"'0 '0567891011 12 D A YS (Be g I nn I ng Day No .220 ) 0 -0 0 0AvrAA>\'2TAAA3;Ai SPEED (cm/sec) DIRECTION (toward) 20 18 16 14 12 10 8 6 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 01234567891011121314 TTunrn/eiiM DflYS (Beginning Day No.233) Figure 31.Speed and Direction (toward)of Water Movement in the South End of Cayuga Lake for Two Week Period Beginning August 21,1985. SPEED (cm/sec) DIRECTION(t o ward)360 270 180 090 000 + 20 18' 10 AAAih.ii ii.a aAamA iV/tr8 6 4 2 o 0 ITHRCR/SUM End of 16 14 12 Figure 32.Speed and Direction (toward).of Water Movement in the South Cayuga Lake for Two Week Period Beginning September 2,1985 , o 14 0 0 o o '.'A?-0"o '-’.a o o 'o <aa o .ao'''"''a 3 4;aax aSX/Ca;&--12 13 DA YS (Be g I n n i n g Day No .245 ) SPEED (cm/sec) DIRECTION(toward)360t 270" 180-JU I V । E I 1—1 1 1 f ;—-I 090-Ap 000A 20 18" 16” in 14" 12" 10" 8” toifi^t A M6" 4" 2 o 0 0000 0 0 144 DAYS (Beginning Day NoITHACA/SUM and End ofFigure33.Speed: o 7 8 11 12 13 255) o a 5 6 Direction (toward)of Water Movement in the SouthCayugaLakeforTwoWeekPeriodBeginningSeptember12,1985. 9 10 0 0 0 0 12 3 46 CONCLUSIONS 1.Current speeds in the south end of Cayuga Lake are very slow during the summer,having a mean (scalar)speed of slight¬ ly more than 2 cm/sec.More than 80 percent of the current speeds measured were slower than 5 cm/sec. 2.The (vector)average current velocity is toward the north¬ northeast.This,however,does not mean that the currents are always,or nearly always,moving in that direction.The trans¬port roses showing the directional distribution of water move¬ment show,in all but the case in which the current speeds arenearzero,two predominant directions - -one toward the north-northeast and another toward the south.These two preferreddirectionscanbeseenintheprogressivevectordiagrams. 3.The progressive vector diagrams also show that while thereareperiodsduringwhichthewaterpersistentlymovestoward the north-northeast,those periods are interspersed with per¬ iods of several days’duration during which the water has no persistent direction in its motion and may tend to stagnate. 4.The temperature record from the mooring shows marked de¬creases in temperature at approximately 10 day to two week in¬ tervals.These temperature fluctuations are probably associ¬ated with incursions of water from the greater body of the lakeandprobablyarethemanifestationofamechanismwhichcauses.relatively complete flushing of the south end of the lake. 5.The temperature record also suggests that a diurnal perio¬dicity exists in the water temperature presumably associatedwithadiurnalperiodicity in water movements.This diurnal periodicity is clearly seen to exist throughout most of thesummerandtakestheformofanearlycompletestoppingofthe water movement at around midnight during most nights of the record.This is presumably associated with diurnally varying winds. Table S-l DIRECTIONAL DISTRIBUTION OF WATER VELOCITIES (ALL SAMPLES INCLUDED) Total Number of Samples:7907 Total Transport "Distance":46784 (Figure S-l accompanies) direction (Magnetic)OCCURRENCES TRANSPORTNumberPercentNumberPercent 000-010 681 3.63 1849 3.61010-020 870 4.63 2440 4.85020-030 954 5.08 3151 6.34 030-040 1292 6.88 3994 7.97040-050 1059 5.64 4502 9.23050-060 945 5.03 4622 9.54060-070 702 3.74 3713 7.72070-080 478 2.55 2358 4.84080-090 322 1.71 1227 2.42090-100 349 1.86 554 0.99100-110 367 1.95 409 0,66 110-120 304 1.62 282 0.37120-130 '338 1.80 380 0.56 130-140 362 1.93 360 0.50140-150 263 1.40 325 0.49150-160 365 1.94 448 0.75 160-170 627 3.33 759 1.28170-180 802 4.27 1757 3.41180-190 923 4.92 1948 3.85190-200 702 3.74 1432 2.74200-210 605 3.22 1173 2.11210-220 506 2.69 666 1.19 220-230 354 1.89 551 0.92230-240 367 1.95 415 0.64240-250 326 1.74 450 0.818 250-260 255 1.36 604 1.14260-270 191 1.02 768 1.54270-280 333 1.77 869 1.66280-290 298 1.59 1215 2.41290-300 263 1.40 1422 2.86300-310 260 1.38 1405 2.88310-320 306 1.63 1168 2.30320-330 334 1.78 1104 2.25330-340 530 2.82 861 1.50 340-350 554 2.95 1029 1.80 350-360 591 3.14 988 1.78 D Table S-2. DIRECTIONAL DISTRIBUTION OF WATER VELOCITIES (SPEEDS LESS THAN 2 CM/SEC) DIRECTION (Magnetic ) OCCURRENCES TRANSPORT Number Percent Number Percent 000-010 366 3.37 1690 3.59010-020 402 3.70 2270 3.85020-030 446 4.10 2966 4.17 030-040 675 6.21 3730 5.97040-050 522 4.80 4321 4.09 050-060 470 4.32 4467 3.51 060-070 352 3.24 3612 2.27070-080 252 2.31 2266 2.07080-090 190 1.75 1134 2.09090-100 285 2.62 466 1.98100-110 284 2.61 310 2.22110-120 245 2.25 174 2.45120-130 267 2.46 261 2.67130-140 278 2.55 235 2.81140-150 187 1.72 229 2.15150-160 241 2.22 349 2.2 3160-170 434 3.99 597 3.65170-180 376 3.46 1595 3.66 180-190 445 4.09 180 3 3.28190-200 349 3.21 1284 3.35 200-210 332 3.05 9 889 4.17 210-220 344 3.16 559 2.45 220-230 214 1.97 432 2.69 230-240 283 2.60 301 2.57 240-250 241 2.21 383 1.52 250-260 149 1.37 534 1.60 260-270 82 0.75 722 1.05 270-280 212 1.95 777 2.10 280-290 162 1.49 1126 2.00 290-300 122 1.12 1340 1.86 300-310 131 1.20 1346 1.34310-320 157 1.44 1080 1.99 320-330 200 1.84 1052 1.18330-340 390 3.59 703 3.59 340-350 384 3.53 840 4.29 350-360 402 3.70 834 3.50 Total Number of Samples:10871 Total Transport "Distance”:4418 (Figure S-2 accompanies) I THACA/SUM §ge 180 OCCURRENCES Figure S-2 090 000360 090 180 TRANSPORT Table S-3 DIRECTIONAL DISTRIBUTION OF WATER VELOCITIES (SPEEDS GREATER THAN 1 CM/SEC) DIRECTION OCCURRENCES TRANSPORT (Figure S-3 accompanies) (Magnetic)Number Percent Number Percent 000-010 407 3.88 1848 3.61010-020 566 5.39 2440 4.77 020-030 616 5.87 3151 6.15 030-040 771 7.35 3994 7.80 040-050 642 6.12 4502 8.79 050-060 566 5.39 4622 9.0306O-070 409 3.90 3713 7.25070-080 280 2.67 2358 4.60 080-090 186 1.77 12227 2.40 090-100 115 1.10 555 1.08 100-110 141 1.34 409 0.80 110-120 ’122 1.16 282 0.55 120-130 140 1.34 380 0.74130-140 156 1.49 360 0.70140-150 132 1.26 325 0.63 150-160 182 1.73 448 0.88160-170 286 2.72 759 1.48170-180 520 4.96 1757 3.43180-190 562 5.36 1948 3.80190-200 438 4.18 1432 2.80200-210 381 3.63 1173 2.29210-220 225 2.15 669 1.30220-230 209 1.99 551 1.08 230-240 150 1.43 415 0.81240-250 125 1.19 450 0.88250-260 147 1.40 604 1.18260-270 136 1.30 768 1.50270-280 175 1.70 869 1.70280-290 187 1.78 1215 2.37290-300 189 1.80 1422 1.40 300-310 163 1.55 1405 2.75 310-320 200 1.90 1168 2.28 320-330 164 1.56 1104 2.16 330-340 233 2.22 861 1.68340-350 282 2.69 1029 2.01350-360 280 2.67 988 1.93 Total Number of Samples:10483 Total Transport "Distance":51203  riHRCR/SUM jSo OCCURRENCES Table S-4. DIRECTIONAL DISTRIBUTION OF WATER VELOCITIES (SPEEDS GREATER THAN OR EQUAL TO 2 CM/SEC) (Figure S-4 accompanies) DIRECTION (Magnetic ) OCCURRENCES TRANSPORT Number Percent Number Percent 000-010 315 3.98 1690 3.61 010-020 468 5.92 2270 4.85 020-030 508 6.42 2967 6.34 030-040 1617 7.8 0 3730 7.97 040-050 1537 6.79 4322 9.23 050-060 475 6.00 4467 9.55 060-070 350 4.43 3612 7.72 070-080 226 2.86 2266 4.84 080-090 132 1.67 1135 2.43 090-100 64 0.81 466 0.9 9100-110 83 1.04 310 0.66 110-120 59 0.75 174 0.37120-130 71 0.90 262 0.559130-140 8 4 1.06 235 0.50140-150 76 0.96 229 0.49150-160 124 1.57 350 0.75160-170 193 2.44 598 1.27170-180 426 5.39 1595 3.41180-190 478 6.04 1803 3.85190-200 353 4.46 1284 2.74 200-210 273 3.45 989 2.11 210-220 162 2.05 559 1.19 220-230 140 1.77 432 0 .9 2 230-240 84 1.06 301 0.64 240-250 85 1.07 383 0.82 250-260 106 1.34 534 1.14260-270 109 1.37 722 1.54270-280 121 1.53 777 1.66280-290 136 1.72 1126 2.41290-300 141 1.78 1340 2.86300-310 129 1.63 1346 2.88310-320 149 1.88 1081 2.31320-330 134 1.69 1052 2.24 330-340 140 1.77 703 1.50340-350 17 0 2.14 840 1.80350-360 189 2.39 834 1.78 Total Total Number of Samples:7907 Transport "Distance":46784 ITHACA/SUM 180 OCCURRENCES Figure S-4 TRANSPORT Table S-5 DIRECTIONAL DISTRIBUTION OF WATER VELOCITIES (SPEEDS GREATER THAN OR EQUAL TO 5 CM/SEC) DIRECTION 3 3 OCCURRENCES TRANSPORT (Magnetic)Number ,Percentt "3 //<Number Percent 000-010 124 4.62 1059 3.47 010-020 155 5.77 :1227 4.02 020-030 225 8.38 ;2060 6.74 030-040 1251 9.34 2533 8.29040-050 1286 10.65 3502 11.46 050-060 289 3 10.76 3884 12.71 s 060-070 237 8.82 3257 10.65070-080 148 5.51 2027 6.63 08 0-090 72 3 2.68 972 3.18 090-100 24 .<0.89 359 1.18 y 100-110 11 0.41 3 116 <0.38 110-120 ‘3’.3'-"I"7 0.70 23 /3 3 0.07 120-130 5 .0.19 <■93 <0.31130-140 2 -'3 0.07 12 0.40 < 140-150 3 2 0.07 :-511"<<:0.36 150-160 0.11 .<3'16/<<3 0.54160-170 11 0.41 64 3 0.21170-180 :87 3.24 526 1.72 -y 180-190 3 82 3.05 492 1.61 3 190-200 63 2.35 371 3 1.21200-210 3-46 1.71 274 0.90110-220 33.15 .0.56 117 0.38 220-230 :../9 0.34 52 3 0.17230-240 11 0.41 91 0.30240-250 18 0.67 3 200 ,3 0.65250-260 18 0.67 248 0.81 260-270 :27 3.1.01 458 1.49 270-280 33 1.23 528 1.72280-290 </'1:57'2.12 879 2.88 -290-300 68 2.53 1105 3.623300-310 60 2.23 1137 <3.72 3 : 310-320 3 52 1.63 :v <‘-"-3 ‘/<789 3 2.58 320-330 '-3 .57 1.94 813 2.66330-340 34 2.12 398 1.30 340-350 3 54 '3 1.26 471 1.54 350-360 48 2.01 395 <1.29 Total Number of Samples:'3 /2686 Total Transport "Distance"::30569 (Figure S-5 acc ompanies : I THAO A/SUM 000360 180 OCCURRENCES Figure S-5 090 180 TRANSPORT Table S-6 DIRECTIONAL DISTRIBUTION OF WATER VELOCITIES (SPEEDS GREATER THAN OR EQ UAL TO 2 CM/SEC but less Than or eq ual to 5 cm/sec ) Total Number of Samples:5303 Total Transport "Distance"-:16626 (Figure S-6 accompanies) DIRECTION (Magnetic) 'OCCURRENCES Number Percent TRANSPORT Number Percent 000-010 198 3.73 666 4.00 010-020 319 6.01 107 3 6.45 020-030 287 5.41 -927 7 5.57 . 030-040 V''371 >7.00 1222 1 .35 040-050 260 4.9 0 865 5.20 050-060 193 3.64 618 3.71 060-070 115 2.17 366 2.20 0 70-080 78 1.47 238 1.43 080-090 60 .1.13 162 0.98 090-100 40 0.75 106 0.64 100-110 /:72 ',•■..1.35 ->194 1.16 110-120 '57 -1.07 /:i5r,;0.91 120-130 66 -1.24 168'.1.01 130-140 82 '1.55 223 1.34 140-150 74 1.40 218 1.31 150-160 121 2.28 333 2.00160-170 183 3.45 539 3.23170-180 344 6.49 1094 6.58 180-190 399 7.52 1325 7.97190-200 295 5.56 938 5.64 200-210 232 /4.37 ;739 4.44 210-220 148 2.79 446 .2.68220-230 135 2.55 1V...400 2.40 230-240 73 1.38 210 1.26 240-250 67 1.26 183 1.10 250-260 89 1.68 /291 1.75 260-270 83 <1.57 269 1.62 . 270-280 <91 1.71 263 1.58 ' 280-290 81 1.53 .257 <■1.55 290-300 73 :1.38 a—,235 1.41 300-310 .71 1.34 219 1.32 310-320 98 1.85 296 1.78 320-330 11 1.45 239 '1.44 ' 330-340 108 2.04 315 1.89340-350 119 /2.24 384 2.31 350-360 144 2.72 .454 2.72 rT-KA£A/SU£ 0E0URRENCES Figure S-6 TRANSPORT Table S-7 DIRECTIONAL DI STR I BUT ION OF WATER VELOCI T I E S (SPEEDS GREATER THAN 1 CM/SECBUTLESSTHAN10CM/SEC) Total Number of Samples:9454 Total Transport "Distance":31524 (Figure S-7 accompanies) DIRECTION (Magnetic) OCCURRENCES Number Percent TRANSPORT Number Percent 000-010 382 4.04 1404 4.45 010-020 542 5.73 2044 6.48 020-030 568 6 .01 2270 7.20 030-040 698 7.38 2641 8.38 040-050 ’7 513 7.5.42 2054 6.52 050-060 7 4 08 4.31 1687 5.35 < 060-070 280 2.96 1233 7 3.91 070-080 188 1.99 762 2.42 080-090 141 1.49 456 7-1.45 090-100 100 1.05 262 0.83100-110 136 <1.44 '7 ‘7-335 7:1.06 110-120 7 121 1.28 77 265 0.84 120-130 136 1.44 293 0.93130-140 156 1.65 359 '1.14 140-150 132 1.40 324 7 1.03 150-160 -;7-"-182 1.93 7 7>7448 1.42160-170 '286 3.03 759 -2.41170-180 ;519 5.49 '17 30 5.49 180-190 562 5.94 1948 6.18190-200 438 .7 ‘4.63 .-7;'1432 4.54 200-210 380 4.02 1162 3.69 210-220 ,7/:224 2.36 635 2.01 220-230 209 2.21 551 1.75 230-240 149 1.587 ,383 7 1.21240-250 121 1.28 340 1.08 250-260 140 1.48 '■'424 1.35 260-270 120 7 1.27 386 1.22 270-280 .7 155 ..7'1.64 430 1.37280-290 146 1.54 433 1.37 290-300 7/7 142 1.50 454 7 1.44300-310 119 1.26 379 1.20310-320 -7 7-167 1.77 508 1.50 320-330 134 1.42 473 7 1.8 5 330-340 '.7?"218 2 .31 584 77 2.61340-350 270 2.86 822 2.69350-360 272 2.88 848 1.93 Figure S-7 TRANSPORT Table S-8 DIRECTIONAL DISTRIBUTION OF WATER VELOCITIES (SPEEDS GREATER THAN 10 CM/SEC) Total Number of Samples:1016 ' Total Transport "Distance":19548 (Figure S-8 accompanies) DIRECTION (Magnetic ) OCCURRENCES TRANSPORTNumberPercentNumberpercent 000-010 25 2.46 445 2.28010-020 24 2.36 396 2.03020-030 47 4.63 871 4.46 030-040 71 6.99 1333 6.82040-050 126 12.40 2418 12.37 050-060 158 15.55 29 35 15.01 060-070 127 12.54 2460 12.58070-080 91 8.96 1586 8.11 080-090 45 4.43 771 3.94090-100 14 1.38 281 1.44100-110 5 0.49 73 0.38110-120 1 0.98 17 0.09120-130 4 0.39 87 0.44130-140 0 0.00 0 0.00140-150 0 0.00 0 0.00150-160 0 0.00 0 0.00160-170 0 0.00 0 0.00170-180 1 0.10 27 0.14180-190 0 0.00 0 0.00190-200 0 0.00 0 0.00200-210 1 0.10 11 0.05210-220 1 0.10 32 0.16220-230 0 0.00 0 0.00230-240 1 0.10 32 0.17240-250 4 0.39 109 0.56250-260 7 0.69 180 0.92260-270 16 1.57 382 1.95270-280 20 1.97 .439 2.24280-290 41 4.04 782 4.00290-300 47 4.63 968 4.9 5 300-310 44 4.33 1027 5.25310-320 33 3.25 660 3.38320-330 30 2.95 6 31 3.23330-340 '13 1.28 257 1.31340-350 12 1.18 <208 1.07350-360 7 0.69 130 0.67 I THRCR/SUM GCCURRENCES Figure S-8 000360 180 -090 TRANSPORT DATE STATION DEPTH SOT TEMP DO PH NH3 PKA PERCENT UN1Z FT FPH ACUTESTD DELTA ACUTEUIO FT2 CHRONSTD RATIO DELTA2 CHRONO 10 CASE 1 104.000 1.000 0.000 7.000 7.500 CASE 1 10.400 8.250 0.364 9.810 2.680 CASE 1 0.010 2.371 1.000 0.110 -0.100 CASE 1 2.371 0.021 16.000 -0.011 CASE 1 CASE 2 104.000 1.000 1.000 7,000 6.000 CASE 2 11.800 8.350 0.425 9.858 3.011 CASE 2 0.013 2.630 1.000 0.099 -0.086 CASE 2 2.630 0.019 16.000 -0.006 CASE 2 CASE 3 129.000 1,000 0.000 8.000 8.500 CASE 3 11.600 8.100 0.060 9.778 2.056 CASE 3 0.001 2.213 1.000 0.117 -0.116 CASE 3 2.213 0.023 16.000 -0.021 CASE 3 CASE 4 129.000 1.000 1.000 8.000 8.000 CASE 4 11.950 8.250 0.020 9.794 2.778 CASE 4 0.001 2.291 1.000 0.113 -0.113 CASE 4 2.291 0.022 16.000 -0.021 CASE 4 CASE 5 148.000 1.000 0.000 5.000 16.200 CASE 5 10.000 7.600 0.066 9.532 1.157 CASE 5 0.001 1.300 1.305 0.153 -0.153 CASE 5 1.300 0.025 18.525 -0.025 CASE 5 CASE 6 148.000 1.000 1.000 5.000 12.000 CASE 6 11.300 8.450 0.093 9.666 5.733 CASE 6 0.005 1.738 1.000 0,150 -0.144 CASE 0 1.738 0.029 16.000 -0.023 CASE S CASE 7 160.000 1.000 0.000 5.000 17.500 CASE 7 10.400 8.800 0.010 9.490 16.956 CASE 7 0.002 1.189 1.000 0.219 -0.217 CASE 7 1.189 0.042 16.000 -0.040 CASE 7 CASE 8 160.000 1.000 1.000 5.000 17.000 CASE 8 9 .600 8.850 0.010 9.506 18.087 CASE 8 0.002 1.230 1 .000 0.211 -0.210 CASE 8 1.230 0.041 16.000 -0.039 CASE 8 CASE 9 176^000 1.000 0.000 4.500 21.500 CASE 9 8.450 8.600 0.010 9.362 14.747 CASE 9 0.001 0.902 1.000 0.288 -0.287 CASE 9 1.000 0.050 16.000 -0.049 CASE 9 CASE 10 176.000 1.000 1.000 4.500 19.000 CASE 10 9.200 8.500 0.010 9.442 10.257 CASE 10 0.001 1.072 1.000 0.243 -0.242 CASE 10 1.072 0.047 16.000 -0.046 CASE 10 CASE 11 195^000 1.000 0.000 4.000 25.500 CASE 11 9.200 8.400 0.010 9.234 12.782 CASE 11 0.001 0.708 1.000 0.367 -0.366 CASE 11 1.000 0.050 16.000 -0.049 CASE 11 CASE 12 195.000 1.000 1.000 4.000 24.500 CASE 12 9.600 8.500 0.010 9.266 14.632 CASE 12 0.001 0.733 1.000 0.355 -0.353 CASE 12 1.000 0.050 16.000 -0.049 CASE 12 CASE 13 209.000 1.000 0.000 4.000 24.500 CASE 13 7.900 8.400 0.060 9.266 11.983 CASE 13 0.007 0.733 1.000 0.355 -0.348 CASE 13 1.000 0.050 16.000 -0.043 CASE 13 CASE 14 209*000 1.000 1.000 4.000 22.500 CASE 14 8.000 8.400 0.050 9.330 10.514 CASE 14 0.005 0.841 1.000 0.309 -0.304 CASE 14 1.000 0.050 16.000 -—0.045 CASE 14 CASE 15 223.000 1.000 0.000 4.000 25.500 CASE 15 9.100 8.600 0.017 9.234 18.849 CASE 15 0.003 0.708 1 .000 0.367 -0.364 CASE 15 1.000 0.050 16.000 -0.047 CASE 15 CASE 15 223.000 1.000 1.000 4.000 23.500 CASE 16 8.700 8.450 0.076 9.298 12.427 CASE 16 0.009 0.785 1.000 0.331 -0.322 CASE 16 1.000 0.050 16.000 -0,041 CASE 16 . CASE 17 237.000 1.000 0.000 7.000 18.500 ®5*CM O M-O OII O W *O O CM ®0,0O®®‘OOWJ O©©®CM O ©M-CM O O® cm©o o co m-or■^*•S3 So CM 8 to io CM 8 o ®n oQ®”M"©CM CM O r-o o o—I I OIO©^§888 n n doII o n io ®o o ©r-o m-cm co O””®ocmn®o»cnoO””®Q*O®Q®O®OO^Q Q ®N CO OOIOOIOIOCMOOO”d O^“O O ®”O ©10 ”O OO”Or^od ©©do ©doo *©do m-noo’cm*do »“||W I I ”11”II”II ”11 ®*o oo*-o o ®*b o ®*o ocmcoo o ®*o oooo oooo o©”©oooo ©”©o o ®r-o ocmcmo o©®o ©noo o®”o ocmcmo ocmcmo ©*®S?88 8R28 8?88 8^88 §?S8 8^88 8588 8?S8 8888 8958 8S28 8828 88*8 8^8 8358 88*8 8£*8 8 je 3 8 8P* o o ©r-o o ©no o ©n o o ©®o o ©®o o ©©o o ©ooo©®o o ©®o o ©©o o ©.©o o ©®o o ©®ch o ©o o o ©ooo©©o o ©©ch o ©doo OO©O O O ©O O O ©O O O ©OOOh OOO©OOON O O O CM O O O’-OOON ooo®ooo®obo®ooo*0-00*-0000»od o ®.boo®oooSoooo§8 §583 8883 8588 8588 8883 8883 8883 8883 8588 8588 8588 8588 8588 8588 8888 8888 888 O’-©*-©’-©©©“©’’-d —o ©©’-©©--d d ©*-o d —'o dodo *-d^d dd^d ^d*-d dd^d —’o'-©dd-d ^d*-©od’-d ’-d^d ©©- ©O»O'OO®®O O O»O'0000»O O CM CM ©OOO O ©O O O©OO OOOO ©OOO ©O r*r-O ©®®OO'tt O ©CM CM ©©®®OO©©OO®®OO®®0'02°e 885?882°8822 8855 gR°2 §?«*8822 8?88 8?22 8888 8255 8855 88?!?§833 8888 §22°8222 82 ®*--~d --®*-’-d*-’-*-®*-~^d-’-®’-d’-’-d--’-~d '-d ”’-d --d d d cm ci *--d<MCM *7® 00 ooo 00*-o o CMOOOOQOOOOOQr-o o®o o©o o©o NO N N o —®O ’-»0 Nt-r-r-®®®®®OOOOOOO OO O ’-’-—CMCMCMCMCM®®—’-’-’-’-’-CMCMCMCMOICMCMCMCMCMCMCMCMCMCMCMCM ®®®*'t^-'e^©©©©©©©©©©r-r-NNr-®®®®»oooooooooCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM®®®®O’"”—’-’-CMCMCMCMCM®®®®®M-M-M-^f't©©®®®®®®®®®W®®®®®®®®®®®®® CASE 35 0.006 3.291 Case 35 '1 .2 291 0.022 16.000 -6/016 case 35 - 3.500 8.000CASE36311.000 1.000 roo6 CASE 36 io.800 8.150 0.260 9.794 2/219 CASE 36 0.006 2.291 L boo 0.113 -6.108 CASE ;36 21291 0/022 16.000 -0.016 CASE 36 -1.000 3.500 7 .000CASE37329.000 0.000 CASE 37 11.800 8.150 0.010 9i826 2.065 Case 37 0.000 2.455 1.600 0.106 tPJ06 CASE :37  ;2 455 6620 16.000 -0.020 CASE 37 329^000 1/000 3.500CASE381.000 6.800 CASE 38 11.206 8/150 0.080 9.832 2.035 CASE 38 0.002 2/489 1.000 0.104 rO.103 CASE 38 2.489 0.020 16.000 -0.018 CASE 38 12.000 6.500CASE39104.000 2.000 0.000 CASE 39 10.850 8.300 0.063 9.842 2.791 CASE 39 0.002 2.541 1.000 0.102 -0.101 CASE 39 2.541 0.020 16.000 -0 018 CASE 39 4.200CASE40104.000 2.000 1.000 12.000 CASE 40 10.900 8.300 0.030 9.916 2.366 CASE 40 0.001 2.979 1000 0.087 -6.087 CASE 40 2.979 0.017 16.000 /-0.616 CASE 40 -" 0.000 10.000CASE41129.000 2.000 8 000 CASE 41 11.200 8.250 o.oio 9 794 2.778 CASE 41 0.000 2/291 1.660 6.113 ^0113 CASE 41 2.291 0.022 /16.600 -0;022 CASE 41 7 200CASE42129.000 2.000 1.000 10.000 CASE 42 11.900 8.300 0/010 9.820 2.934, CASE 42 0 boo 2.421 1 000 0.107 -0107 CASE 42 2.421 0.021 16.000 -0 020 Case 42 '"-2.000 - 15.500case43148.000 O.OOO 4;ooo CASE 43 10.000 8.160 6.027 9.554 3.396 CASE 43 0.001 1.365 1.000 6.191 -0.190 CASE 43 1.365 0.037 16.000 -0 036 CASE 43 2.000 4.006 .j \... CASE 44 148.000 1.000 10.500 CASE 44 11.400 8.250 0.012 9.714 3.321 CASE 44 6.000 1/928 I.606 0135 -0.134 CASE 44 1/928 0/026 ,16.000 -0.026 7 CASE "44-.-. 0 006 6.000 17.000CASE45160/000 2.000 CASE 45 10.800 8.650 -0.010 9.506 121228 CASE 45 0 601 1.230 1.006 0.211 -6.210 CASE 45 -1.230 0.041 16.000 -6,639 CASE 45 -.../ /6.000 16 booCASE46160.000 2.060 -1.000 CASE 46 10.400 8.750 0:010 9/538 14.010 CASE 46 0.001 1.318 1.000 :0.197 -0.196 CASE 46 -1.318 16.000 -0.037 / CASE 46  /5.500CASE47176.000 2.000 0.066 21.000 CASE 47 8.700 8.550 0.610 9.378 12.937 CASE 47 0.001 0.933 1.060 6,279 -0.277 CASE 47 1.000 0.050 16 bob -01049 CASE 47 CASE 48 176.000 2.000 1/000 5.500 18.000 CASE 48 9.600 81650 0.010 ./9.474’/~-13.041 CASE 48 0.001 1.148 1.000 0.226/-0.225 CASE 48 1.148 0.044 16.006 ;-0.042 CASE 48  0.000 25.500CASE49195.000 2.000 4.500 CASE 49 9.400 8.450 0.010 9.234 /14.122case;49 6.001 0.708 LOOO 0.367 /?0.366 CASE 49 1.000 ;0.050 16.000 -0.0491 CASE 49 - 22.800CASE50195.000 2.000 1.000 4.500 CASE 50 10.106 8.600 6.010 9.320 15.993 CASE 50 .0.002 0.824 I.O66 0.315 -0.314 CASE 50 -1.000 O.05O 16.000 -0.048 CASE 50 * 0.000CASE51-209.000 2.000 5.000 241500 CASE 51 8.900 8.550 01016 9.266 16.129 CASE 51 0.002 0.733 1.000 0.355 —0/353 CASE 51 '*.*.1*000 0.050 16.000 .-0.048 CASE 51 :-;.-- 19.500CASE52209.000 2.600 1/600 5.000 CASE 52 8.400 8.450 6.620.9.426 9.558 CASE 52 0.002 1.035 i.boo.6.251 -0.249 CASE 52 1.035 0.048 16.000 -0.046 CASE 52 CASE 53 223.000 '„2^000 0.000 4.500 25.800 CASE 53 9.400 8.650 0.043 9.224 '21.039 CASE 53 0.009...6.708 "1.000 6.367 /-0.358 CASE 53 -A LOGO 0.050 16/000 -0.041 /CASE 53 CASE 54 223.000 2 000 1.000 L4'500 -22.000 CASE '■54 ’.7.900 8.60p;0.069 9.346 15.216 CASE CASE 54 54 0.010 0.871 1,000 1.000 0.050 0,299 16.000 ;; ^0,288 -0.040 CASE 54 CASE 55 237.000 2.000 '0.000 0.600 <19.000 ? CASE 55 8.000 8.150 o.o id 9.442 4.857 CASE 55 0.000 1.072 1.000 0.243 -6.242 CASE 55 1.072 0.047 16.000 -0.046 CASE 55 CASE 56 237.000 2.000 1000 6.000 12.000 CASE 56 7.700 7.950 0.036 9.666 .1887 CASE 56 0.001 1,738 1.025 0.146 -0.145 CASE 56 -1.738 0.028 16 000 -0.027 CASE 56 CASE 57 l'.251.000 2.000 0.000 10.500 18.500 CASE 57 8.300 8.250 :o oio 9 458 5,833 CASE 57 0.001 1.109 i,obo 0.234 -6.234 CASE.57 1.109 0.045 16.000 -0.044 CASE 57 CASE 58 25E000 2.000 1.000 10.500 18.500 CASE 58 8.400 8.300 0.010 9.458 6.499 CASE 58 0.001 1.109 1.000 ^.234 -0.234 CASE 58 1.109 <0,045 16.000 -0.044 CASE 58 CASE 59 258.000 2.000 o.oob 10.000 18.800 CASE 59 8.600 8.550 0.010 9.448 11.218 CASE 59 0.001 1.086 1.000 6,239 -0.238 CASE 59 1.086 0 046 16.000 -0.045 CASE 59 ..'X CASE 60 .258.000 2.000 1.000 10.060 18 500 CASE :60 8.700 8.500 ;0.01b 9.458 9.922 CASE 60 0.001 1.109 1.000 0.234 -0.233 CASE 60 1.109 0 045 16.000 -0,044 CASE 60 *. CASE 61 265.000 2,000 0.000 8.000 17 /500 CASE 6i 8 750 8.350 0.010 9.490 6.755 CASE 61 0.001 1.189 1.000 0.219 -0.218 CASE 61 1.189 6.042 16.000 -0.04 1< CASE 61 A CASE 62 265.000 2 000 1.000 8.doo 17.800 CASE 62 '"-8.900 8,450 0.010 9.480 8,529 CASE 62 0.001 1.164 1.000 0.223 -0 222 CASE 62 1.164 0.043 16.000 ;-0.042 CASE 62 CASE 63 272.000 2.000 d.ooo 6 000 17.000 CASE 63 8.300 8.350 0.020 9.506 6.527 CASE 63 0.001 :1.230 i.ood 0.211 ^0.210case:63 ..1.230 0.041 16.000 -0.039 CASE 63 . .- CASE 64 272.000 2.000 1.000 6.000 17.500 CASE 64 8.400 8.400 0^020 9,496 7.517 . CASE ;64 0.002 1.189 1.000 6,219 -0.217 CASE 64 I .1.189 0.042 16.000 -0.041 CASE 64 CASE 65 280.000 2.000 0.000 9.000 16.200 CASE 65 9.100 8.350 0,010\9.532 6.176 CASE 65 0.001 1.300 1.000 0.200 -0.199 CASE 65 1.300 0.038 16.000 -0.038 CASE 65 CASE 66 280.00O 2.000 1.600 9.006 16.200 CASE ‘66 8.800 8.400 -...9.532 6.878 CASE 66 .'1.300 1.000 0.200 CASE 66 1;300 0.038 16.000 CASE 66 .-L-: CASE 67 287.000 2.000 d.ooo 9.500 14.500 CASE 67 9.400 8,400 0.010 9.586 6.118 CASE 67 0.001 1.462 1.000 0.178 -6.177 CASE 67 '..1.462 0.034 16 000 -0.034 CASE 67 CASE 68 287.000 2.000 1 boo v 9.500 15.000 ' CASE 68 9.300 8.450 0.010 9.570 7.051 CASE.68 0.001 1.413 i.ooo 0.184 -0.183 CASE 68 1.413 0.035 16.006 -0.035 CASE 68 CASE 69 ’-294.odd 2.000 0.000 12.000 13.000 CASE 69 10.000 8.300 0.020 9.634 4,429 CASE 69'0.001 1.622 1,000 0.160 -0.159 CASE 69 1.622 0.031 16.000 -0.030 . CASE 69 CASE 70 294.000 2.000 1.000 12.006 13.100 CASE 70 9.800 8.300 ?.0.010 9.631 4.460 CASE 70 0.000 1.611 1.000 0.151 -0.161 CASE 70 -1.611 0.031 16.000 -0.031 CASE 70 - CASE :'71 :301.000 2.000 0,000 12.000 10.500 CASE 71 11.600 -8.300 0.010 9.714 3.712 CASE 71 0.000 1.928 1.000 0.135 -'-0.135 CASE .71 ?1.928 0.026 16.000 -0.026 CASE 71 . CASE 72 301,000 2.000 1.000 12.000 11.000 CASE 72 11.000 -8.300 0.01O '9.698 3.846 CASE 72 0.000 1,862 1.000 0.140 -6.139 CASE 72-<1.882 0.027 16.000 -0.026 : CASE 72 *... CASE ' -73 ‘311.000 2.000 o?oob;12.000 9.500 '‘.x' \CASE 73 10.400 8.250 0.010 9.746 3.093 CASE 73 0.000 2.065 1.000 0.126 -0.126 CASE 73 2.065 0.024 16.000 -0.024 CASE 73 CASE 74 /31l'000 2.000 <1.000 12.000 9.500 CASE 74 10.400 8.250 0.010 9.746 3.093 CASE 74 0.000 2.065 1 .000 0.126 -0.126 CASE ,74 .2.065 0.024 16 .000 -0.024 CASE 74 CASE 75 329.000 2.000 0.000 12.000 7.500 CASE 75 11.600 8.100 0.010 9.810 1.913 CASE 75 0.000 2.371 1.000 0.110 -0-.109 CASE 75 2.371 ,0.021 16.000 ^0021 CASE 75 CASE 76 329'000 2.000 1.000 12.000 7.500 CASE 76 11.200 8.150 0.010 :9.810 2 .141 CASE 76 0.000 2.371 1.000 0.110 -0.109 CASE 76 2.371 0.021 16.000 -0.021 CASE 76 ?CASE 77 104’000 3.000 0.000 6.500 8.200 CASE 77 10.200 7.850 2.650 9.788 1.141 CASE 77 0.030 2.259 1.084 0.106 -0.076 CASE 77 2.259 0.020 16.000 0.010 CASE 77 1.000 CASE 78 104.000 3.000 1.000 6.500 7.900 CASE 78 8.400 8.000 1 .870 9.797 1.570 CASE 78 0.029 2.307 1.000 0.113 -0.083 CASE 78 2.307 0.022 16.000 0.008 ,CASE 78 Ldoo CASE 79 129.000 3.000 0.000 5.000 10.500 CASE 79 10.400 8.150 0.950 9.714 2.656 CASE 79 0.025 1.928 1.000 0.135 —0.110 CASE 79 1.928 0.026 16.000 -0.001 CASE 79 CASE 80 129^000 3.000 1.000 5.000 10.000 CASE 80 10.800 8.100 1.450 9.730 2.291 CASE 80 0.033 1.995 1.000 ;0.130 -0.097 CASE 80 1.995 0.025 ,16.000 ,0.008 1 CASE 80 1.000 CASE 81 148.000 3.000 OiOOO 4.500 16.000 CASE 81 10.200 8.500 0.102 9.538 :8.393 CASE 81 0.009 1.318 1.000 0.197 -0.189 CASE 81 1.318 0.038 16.000 -0.029 CASE 81 CASE 82 148*000 3.000 1.000 4.500 12 800 CASE 82 10.800 8.250 0.174 9.640 3.911 CASE 82 0.007 1.644 1.000 0.158 -0.151 CASE 82 1.644 0.030 ;16.000 -0.024 CASE 82 CASE .83 160^000 3.000 0.000 3.500 17 500 CASE 83 10.400 8.750 0.050 <9.490 15.395 CASE 83 0.008 1.189 1.000 0.219 -0.211 CASE 83 1.189 0,042 16.000 --0.034 CASE 83 CASE 84 160’000 3.000 1.000 3.500 17.500 CASE 84 10.200 8.300 0.080 9.490 6.065 CASE 84 0.005 1.189 ;1.000 0.219 -0.214 CASE 84 1.189 \0.042 16.000 -0.037 CASE 84 CASE 85 176-000 3.000 0.000 4.000 22.000 CASE 85 8.750 8.600 0.010 9.346 15.216 CASE 85 0.002 0.871 1.000 0 299 -0'297 CASE 85 1.000 0.050 16.000 ^0,048 CASE 85 CASE 86 176^000 3.000 1.000 4.000 19.500 CASE 86 9.100 8.450 0.010 9.426 9.558 CASE .86 0.001 :1.035 1.000 0.251 -0.250 CASE 86 1.035 0.048 16.000 -0.047 CASE 86 CASE 87 195^000 3.000 0.000 4.500 26.000 CASE 87 9.200 8.550 0.010 9.218 17.681 CASE 87 0.002 0.708 1000 0.367 -0.365 CASE 87 1.000 0.050 16.000 -0.048 CASE 87 CASE 88 195.000 3.000 1.000 '4.500 24.500 CASE 88 8.700 8.550 0.010 9.266 16.129 iASE 88 0.002 0.733 1.000 0.355 -0.353 CASE 88 1.000 0.050 16.000 -0.048 CASE 88 '■';:' CASE 89 209.000 3 000 0.000 4.000 25.000 CASE 89 7.900 8.400 0.050 9.250 .12.377 CASE 89 0.006 0.708 /1.000 0.367 -0.361 CASE 89 1.000 0.050 16.000 -0.044 CASE 89 CASE 90 209.000 3.000 1.000 4.000 21.000:ase 90 7.400 8.300 0.050 9.378 '7.712 CASE 90 0.004 0.933 1.000 0 279 -0.275 CASE 90 .1.000 0.050 16.000 -0.046 CASE 90 CASE 91 223^000 3.000 0.000 3.000 25.000 CASE 91 ;■9.100 8.550 0.058 9.250 16.634 CASE :91 0.010 0.708 1.000 0.367 -0.358 CASE 91 1000 0.050 16.000 -0.040 CASE 91 ’>7 :.. 7 .-/■■•••;V'V//'' CASE 110 .',;"i;’s ,:i .CASE 111 311.000 3.0007 7 6.000 3 000 -7l6?660//- CASE -111 .10.000 7.850 :0.550 6.^730 -'^-.■l/3Qt-?-/?.7: CASE ?11i 7-;0;Q07 1.995.1.084 L 0.120/-0;113 ..':/-?/.....- CASE m .1.995 0.023 16.000 '-0,016 ‘' CASE nt .7/ J CASE 112 311.000 3.000 i.ooo 3.000 9,500 //;;.:> CASE 112 10.060 7.850 0.480 9.746-''1,255 ' CASE 112 0.006 2.065 1.084 0.116 -O;11O /?>,:.•■/. CASE 112 2.065 0.022 16.000 .-6.016 ^..<?/?. CASE 112 '7 CASE 113 329.000 3.000 0.000 1.500 6 000 CASE 113 12.000 8.050 o.iso 9.858 1.532 >/-•••./•.•/.■,J:-'--''.-."'''/ CASE 113 0.002 2.630 1.000 0.099 -0.096 CASE 113 2.630 0-019 16.000 /-6.017 . CASE 113 CASE 114 329;000 3.000 1.006 1.500 6 000 CASE 114 11.600 8.050 0.160 9.858 1.532 -/-■ CASE 114 0.002 2;630 1.000 6.099 -0.096 CASE 114 2.630 0.019 16.000 —0.017 ; CASE 114 7 CASE 115 104.000 4.000 0.000 7.500 '/7.200 ? CASE 115 10.800 7.950 0.120 9.820 1.332 CASE 115 0.002 2.421 1025 0.105 -6.103 .■•'/'?/'>; CASE 115 a 2.421 0.020 16.000 -0.019 ' < CASE 115 - CASE 116 104.000 4.000 ;1.000 7.500 5.800 —CASE 116 11.200 8.000 0.142 9.864 -■1 348 >: J CASE 116 0.002 2 667 1.000 0.097 -0.096 .- CASE 116 2.667 0.019 16.000 ^0.017 CASE 116 .-1 CASE 117 129.000 4.000 0.000 9.000 8.500 ?- CASE 117 11.100 8.350 0.010 <9.778 --3 598 CASE 117 0.000 2.213 i.ooo 0.117 ^6.117 CASE 117 2.213 0.023 16.000 5 -0.022 ;; CASE 117 .1 ; CASE 118 129.000 4.000 1.000 9.000 .7,500 ?-,' CASE 118 11.400 8.300 6.010 7 9.810 2 998JCASE1180.000 2.371 ?1;000 0/110 .-0.109 CASE 118 2.371 0.021 16.006 .-0.021 •■■?■>?.'.?>?■"'■'<—?./-.?CASE 118Case119 148 000 4.000 0.000 5.500 16.500 'CASE 119 9.700 8.050 0.066 9:^22 :3.263 />.> CASE 119 0.002 1274 1.000 0.204 J *0.202 CASE 119 -c'''.../<1.274 0.039 16.000 -0,637 CASE 119 '- CASE 120 148.000 4.000 -1.000 5.500 ’10.500 —.-??■'•//..->•'- CASE 120 11,300 8.400 0:027 9.714 4.628 -■■-?/> CASE 120 6.001 1.928 1.000 0.135 -0.134 CASE 120 1.928 ;0.026 16.000 -0,025 /X?— CASE 120 '-i :...:\...( CASE 121 160.000 4.000 0.000 6.000 17.000 / CASE 121 10.700 8.800 0;010 9;506 .16;443 CASE 121 0.002 1.230 1/000 .0.211 -0/210 ./--//■•//■’> CASE 121 -*;:«1.230 0.041 16.000 '-0 039 . CASE 121  CASE 122 160.000 4.000 1.000 6.000 17.000 /77 CASE 122 IT;000 ;8.800 0.030 9.506 -.16.443^- CASE 122 0.005 1.230 1.000 6.211 ^0.206 CASE 122 ..E230 r 0 041 16.000 -0.036 CASE <122 .- CASE 123 176.000 4.000 0.000 5;000 CASE 123 8.600 8.650 0.010 15.276 CASE 123 0 002 0.966 1.000 0.269 *0.268 : CASE 123 1.000 0.050 16.000 -0.048 CASE 123 '.. Case 124 176.000 4.000 hooo 5.000 7case12479.700 8.650 0.010 9.458 13.465 -.<:'■7\/case 124 0.001 1.109 1.006 0.234 ’-0.233 '■;/ CASE 124 .’■1.109 0.045 16.000 -0.044 CASE 124 CASE 125 195.000 4.000 :0.000 4.000 /■£5,560—<■■■■/. CASE 125 9.200 8.450 0.010 9.234 44.122 f ,-.■■>■■.///: CASE 125 0.001 0.708 <7x i.ooo 0.367 -0.366 ;>- CASE 125 -1 ,’1.000 X 0.050 16.000 —0.049 „7 /-?' CASE 125 CASE 126 195;000 4.000 1.000 4.000 -23.200 7/7-7?'/.>/>:'/ CASE 126 10.200 8/600 0.010 \9.308 .■16.395 -.x-v/??;7->:;//z^^''-■•./--;7^;-?-?-■■■ CASE 126 6.002 0.802 1.000 6.324 :-'-^.323 ////.< CASE 126 i.ooo;0.050 16.000 7 -0.048 :7:;'/7;?..7 : .CASE .126 \ CASE 127 209.000 4;000 0.000 4.500 25.000.'?V 7 7 .77>>/1 ——CASE 127 8:200 <--8.400r-x-<V;?0;030 .<9.250 -<12-.377i/>/^^-•-■>/>7'7 :z-:"-7'/■ CASE 127 0.004 0 708 1.000 6.367/-0.364 :7;7--<7.?V > CASE 127 T.OOQ O.XWO 16/000 f0.046 >z —/-7 ;77—7 <. CASE 127 CASE 128 209:000 4.000 -,1.000 4.566 'z'18.500.'->>-:-'-//.->-.‘7 .' CASE 128 7.900 r 8.300 0.050 9.458 />6-..499-J;‘.7"?'-7\7>.>7 CASE -128 7--0.003 <1;109 1.000 ’>0/234:-?..*6.231 7-7.'"--7/\-7<-7 ;; CASE 128 ''*'I 1.109 6/045 ;16.000/*0.042 -7/-,;.7>7;7 777 /7——/7 -7..' CASE 128 '.*'‘A .r.. CASE -129 223.000 4.000 0.000 /5.600 /;25;000 Z.77 :.•■>„7;->> CASE 129 9.400 8.650 0.038 9.250 20.076 7 777v,;''^->77—-—7-:> ~-CASE 129 \0 008 0.708 :I-000 0.367 -0.360 .7 7;7 7>/7:<7:-.,7—7—/7 ,7. .:?/7 >/..7’’'--7??..!...:' '"‘X .-.a ;;,7 ©cm *to '.®'‘p<- d^NO© d o d to d o d todootodooto 006 to000to 00 6 to§5 §3 ..-<8 5 8 3 ©©’*-O’-©©o©oP O ©O OOOtoto©©toto bo OO O .O ©o d to .OOPO®Ooop222O.®O o op 88^®d *do ® -■.®CM Ch 'CM O to Oto’ CM CMtoO O’CMtoCM. 888 ’cM d oI'-CM o ®od ' 8588 888 .'to d d ' tocm .O O to to .0 0.0 08tocmcm.o to r-r-cm b-r*o to toto oto *o8988 o o o888 0 o **828dod«CM 888 ’tod dtoCM O O to to OO8toCMCM-.Q toCMO O .Q CM o 0*00 otto©otro b®*©©®*b885888988882889888988 ddoto ^otoo <0000 to.obto oopto oooto pCM ©00008©to QOto®O O’-© p *b ©®*bo to Poo ©to oo »tob 6H-l I *II -I I I I ~I I O0»-N ONOO O000 ©’“toto-O’-8 8 2 8 2 g 2 g 8 P2g 8 gag ,g 8 to d o cm d o p*cm *d o d dp d dd"Il ’-I T z’-I I *-I I ©op r-odd®d o d d 00008588858885888588 p o o ©oo858888 dd*-d *“p 000 o o 00 b85888888 OO rO >dr O' ’o to o e r*oa8 ?-®Oto.CM **oooo o oNr*bo®®o or«>o©** cm cm on cm cm 8080 8*00 8^8*toto 0 0 poo QP*8588 8883 d ©d d db’-p 888 .8S8 U d ©’ddoto<to .CM CM 'lUuiUimUllillilUJUlUllilUIUlUlUlUlUllillLililUllLlUlldUlUlUililUlUlUllilUJUllUUiUJUl UIUIUI 111 UI UI UI UJ UI UI UI UI Ul UI LU UIUILU UI 111 Ui UI LU Uj UJ UI UI UI til UI LU UIIaJLULlI 111 111 UIU1 Ui UI UI LU UJ 111 UI UI UI-UI UJ UI UI UI UI UI UI OoSoSopSoO 800 QOOO OOP O OOP OO OO o op p 00 o 00 o o 0000 op O ppp OPP PO OP O O O O O P OP OO 0000 ppPO O O OO OP p p O OP PP OOP O OOP p-©b to o 6 *to b -0_.;cg g 888d.dp' O “to 00—00*-888 888 888dtodto.CM dobcM ooocm8088/8 ©8 8ddro0dd ...OO 00 o b toto :O ©0088888822882288888822 oooto bob to oOoto oo cm.do**btototo d tooto ©CM*to ©to**o®»to ob d*3 8853 8883 88-3 8888 8883 8883 8888 ©0 0 to§088 §088 boo 00?-888 888 888 0 00 o o o o o *©toob8888885838888 pob©oboo on*©op ^*p b *top d to r-o..op to o..—8988 8958 8888 8858 8328 8828 8528 88^8 8328 8828 85 to to o b to -o .©to c*o ©to o-to®^O00>©to *o o r*©o.o r**r?0*1^^-©Ptor’8853 88 53 888 8 8 S 5 8 S 8 2 8 8 8 2 g 882 8 d ddd ddod b to d d dboo totoob totoob totood।ItI-.,11?-.*t I 't *I .'। '1 .*।.' oooo .oooooto®to poto®o *o to r- CASE 148 6.001 1 928 1*000 6.135 -0 134 CASE 148 1.928 0.026 16.000 -0/025 . CASE 148 '. CASE 149 311.000 4.000 0.006 4.000 8.000 CASE 149 10.600 8.300 0.050 9.794 3.107 CASE 149 0.002 2.291 1.000 0.113 —0,112 CASE 149 2.291 7 0.022 16.000 -0.020 CASE 149 - CASE 150 311.000 4.006 .1.000 4/OOO 8.000 CASE 150 10.700 8.300 0.040 9.794 CASE 150 0.001 2.291 .1.000 <-6,.1137 -0/112 CASE 150 ’.?2*291 0.022 16.000 -0.021 7 CASE 150 CASE 151 329.000 4.000 0.000 10.000 77 7.000 CASE 151 11.000 s:150 0.010 9.826 2.065 CASE 151 0.000 2.455 1.000 ;0.106 -6.106 CASE 151 2.455 0*020 16.000 -0.020 CASE 151 .-....>.' CASE ;152 329.000 4.000 1.000 10.000 7.000 CASE 152 11.000 8.200 0.040 ;9.826 2*311 CASE 152 0 001 2/455 i.ooo 07106 -0.105 CASE 152 .-2.455 0.020 16,006 ...-0,019 7CASE152 CASE 153 104.000 5*000 0.000 7*0o6 8.500 CASE 153 11500 8*300 0.104 9.778 3/219 / CASE 153 0.003 2.213 1.000 0.117 -0,114 CASE 153 2.213 .0.023 16.000 -0.019 CASE 153 CASE 154 104.000 5.000 /7'7;1*600 7 /7.000 7.000 CASE 154 11:006 8.300 0.122 9.826 2:892 CASE 154 6.004 2.455 i.ooo 6/106 -0,102? CASE 154 -2.455 0.020 16/000 -0.017 \ CASE 154 CASE 155 129.000 5.000 0.000 4.000 12.000 CASE 155 10.200 87450 0.040 9.666 5.73$ CASE 155 6.002 1.738 1*000 0.150 -0/147 CASE 155 1.738 0.029 16.000 .-0.026 CASE 155 CASE 156 129.000 5.000 1.000 4.000 iO/500 CASE 156 9.600 8.400 0.096 9.714 4.628 CAS$156 0.004 17928 1.000 6.135 -0.13i CASE 156 <1.928 0.026 16.000 -0.022 CASE 156 CASE 157 148.000 5.000 0*000 4.500 16.000 CASE 157 9.900 8.400 0.047 9/538 6.784 CASE 157 0.003 1.318:1*000 0.197 -0.194 ; CASE 157 ...1.318 0.038 16.000 ;/-0.03$ CASE 157 -- CASE 158 148.000 5.000 <1.660 4.500 12.800 CASE 158 10.600 8.650 0.052 9.640 9.275 CASE 158 0*005 1.644 1.000 0.158 -6.153 CASE 158 .-1.644 0.030 V 16.000 -0.026 ? CASE 158 .*1 CASE 159 160.000 5.000 0.000 3.000 18.000 CASE 159 10.200 8.500 0.070 9.474 9.598 Case 159 0.007 f 1.148 1.066 0.226 40.220 CASE 159 'f..1.148 /0.044 16.000 -0.637 CASE 159 *  ... CASE 160 160.000 5 000 :1/000 3.000 18.000 CASE 160 10.400 8.500 0.050 9.474 9.598 CASE 160 0,005 1:148 1.000 0.226 -0.222 CASE 160 ;1.148 0.044 16.000 -0.039 CASE 160 CASE 161 176.000 5 000 0.060 7 4.000 22*000 CASE 161 9.100 8.650 0.610 ,9.346 :16 762 CASE 161 67002 0871 1.006 6.299 -0,297 CASE 161 ^*5 1.000 0.050 16.000 -0 /048 CASE 161 '**; CASE 162 176.000 5:000 1.000 4.000 19.500 CASE 162 9.800 8.650 0.010 9.426 14:346 CASE 162 0.001 1.035 1,060 0.251 -0.250 : CASE 162 -1.035 0.648 16.000 —6*047 CASE /162 f-'‘ CASE 163 195.600 5.000 0.000 4.500 26.500 CASE 163 9.100 8.600 0.010 9.202 .20.002 CASE 163 0.002 0.708 1600 0.367 -0.365 CASE 163 1.000 6/050 ,16.000 -0.048 CASE 163 /. CASE 164 195.060 5 000 1.006 4.500 25/500 CASE 164 9.100 8.650 0.010 9.234 ?20.674 CASE 164 \0.002 0.708 i.ooo 0,367 \/^0i365 ? CASE 164 i.ooo ,0,050 46*000/40.048 CASE 164 /'.r« CASE 165 209.000 5.000 0;000 3.500 25.^00 CASE 165 7.800 8.350 0*060 9,224 j 11.781 CASE 165 6.007 0.708 i.ooo 0.367 -0.360 CASE 165 1.000 6,050 16.000 ^0.043 CASE 165 ---- CASE 166 209.000 5.000 1.000 3.500 23,000 CASE 166 7.300 8*300 6.086 9.314 8.828 CASE 166 ;6,007 0.813 1.066 0.320 -6.313 CASE 166 1,000 0/050 16.000 /:?■-0*043 Case 166 a" CASE 167 223.000 5.000 0.000 4.000 ?25 000 V-' CASE 167 9.200 8.650 0.051 9.250 -7-20.076 7 -7„f .-p;-' CASE 167 0.010 0.708 1000 0.367 -6.357 ''/"7'?7." CASE 167 7'*1000 0.050 56.000 -,-0 040 ///-'; CASE 167 CASE 168 223*000 5.000 i.ooo Z 4.000 23.000 :7.-. CASE 168 8/100 8.450 0.082 9.314 7-'12*0327 .<-V;.-/-"/7'-r 7ZvZZ/-7 7/- CASE 168 0.010 0.813 1000 6.320 t6*310 -<'Z--':- CASE 168 1.000 ;0 056 16.000 -0.040 J :77,Z':.-\Z^Z./Z'7^ CASE 168 z^v . CASE:169 237.000 5.000 6.000 3.500 19.600 'C'-'' <CASE 169 7.600 8.050 0019 9.423 4.066 ' CASE 169 0.001 1.028 1000 0.253 -0 252 7.7.777z:7./‘ CASE 169 .*.1.028 7 0.049 16.000 -0.048 CASE 169 :.7 - CASE 170 237.000 5.000 1.000 3.500 ::\‘Z'Zi7.-06d^.-\7X<Z 7 \-7'.--7- CASE 170 7.300 8.000 7 0.010 ;9.506 'Z .3.025 .--'Z-"7 .CASE 170 0.000 7 1.230 1000 6.211 /-77-0.211 '',,.',7 7^ CASE 170 'A 1230 p.041 16,000 7/...Z/7Z;.-...;//7 Z'7 CASE 170 CASE 171 251.000 5.000 0.000,5.000 18.000 7'7” CASE 171 :8.800 8.300 0.480 9.474 7/'&-7"-7'777 - CASE 171 0,030 1148 1000 0*226 '-6.196 _7---.<'- CASE 171 1148 0,044 16.000 7:;-0.013 7-_Z<7/-/''7' CASE 171  CASE 172 251.000 5.000 1 000 5.000 .18.000 CASE 172 8.800 8 350 0.420*9.474 6/991 . CASE 172 0.029 1148 1.000 0.226 '7^6.197 .CASE 172 <-1.148 0.044 16.000 -0.014 CASE 172CASE173 258.000 5.000 0.000 3.500 19.000 zzz;-K; CASE 173 9.200 8*550 0.010 :9.442 7 11.366 CASE 173 0.001 1072 i.ooo 0*243 /'7 -0.242 7 CASE 173 1072 0.047 16.000 -0.046 .;/-;-/■7/ CASE 173 7-.. CASE 174 258.000 5.000 1.000 3.500 -19.000 'Z -7 '■/7-./ CASE 174 9.400 8.550 6*610 -9.442 11366 7 7-7.,7x7 7,.7.-7;;. CASE 174 0.001 1072 1.000 6.243 -0.242 '-Z-z/Z.-.-7- CASE 174 1072 6.047 16.000 ?/'Z ^>•■046 7:.7;'Z7’-'7-Z' CASE 174 -\,7 .7«'.,-,.Z "7 '*...7  CASE 175 265.000 5 000 0.000 4.500 18.000 CASE 175 8.200 7.950 0.170 9.474 Z--Z 2.905 Z CASE 175 0.005 1148 1.025 6.221 *0216 //:..- CASE 175 ~1.148 0.042 16.000 7'-0.038 -Z.7Z -<Z7' CASE 175 ... CASE 176 265.000 5.000 1.000 '4.500 7'18.000 77/777''-'7../ CASE 176 8.100 8.050 0.170 9*474 :3.630 CASE 176 0.006 1148 1.000 0.226 -0.220 CASE 176 -' '1148 6.044 16.000 \.-0.037 ’Z7-77 /ZQ.J CASE 176 ' CASE 177 272.000 5*000 0.000 3.000 17:000 CASE 177 9.000 8.450 0.020 9.506 7-'-8.080 Z-77'?;'?v. CASE 177 0.002 1.230 1.000 0.211 -0.210 CASE 177 1230 0.041 16.000 ;*0,CG9 .7’,.1-7 7;'7- CASE 177 ..7 .....'.,. CASE 178 272.000 5*000 \1000 3.000 -,7Z 17.500 -''r 7/^. CASE 178 9.000 8.450 0.020 9.490 /'78.3587 -.-J,:-7/-7 CASE 178 0.002 1.189 1.000 0.219 70:217-- -'-<-■•- CASE 178 ''1.189 0.042 16.000 -^j.040 >\'■■'■'/■'/'z CASE 178 : CASE 179 280.600 5*000 0.000 3.500 15.900 7 777'-//7777 7 —7777..-^. CASE 179 io.200 8.456 0.150*6;541 7.498 CASE 179 0.011 1.327 1;000 0.196 -0.185 •/'■•.7 CASE 179 Z.7 7 1327 0.038 16.000 -O.(tt6 CASE 179 .7 CASE 180 280000 5.000 i.ooo 3.500 16/100 /777/77.v; CASE 180 10.100 8.500 0*100*9.535 8.450 7,7/<-/7<-- -CASE 180 0.008 1*309 1.000 0*199 "7"7 -07190';7'c r CASE 180 .-1309 0*038 16.000 7'7 -0.030 7./--7 ,ZZ'7 7 Z.7777 CASE 180 - CASE 181 287.000 5.000 0.000 4.500 13.000 7 7'Z--7 7;777,.„777///; CASE 181 9.900 8.500 0*010 9 634 /:77 7.5.8437.-7?7 77 /7;;- CASE 181 0*001 1622 i.ooo 0.160 7Z/--0.160 '^7'7Z CASE 181 .'7 '1622 6.031 \16.000 7.7 -0.030 ;':?7Z7'7Z-7 Z77/.-77<Z7'777;'7 CASE 181 .-.- CASE 182 287.000 5.000 1.000 ./4.500 713.500 7'.'Z-.^^—CASE 182 9.700 8.500 0.010 9*618 7.081 77 -7./.7/7 77>-. CASE .182 0.001 ;...1.567 1.000 0.166 ''-7*0.d657-7':-Z-77 -/7-7/77-, CASE 182 .1567 0.032 ;16 000 7’7-;-0 031 Z7'"-,Z'Z/'-ZZZ.''7/-'J ? 7 CASE 182 '.-1 ‘,- CASE 183 294.000 5;000 /0.000 4/000 .l2;-500'7/'7 -'■--/'/7:7/.,.7/ CASE 183 10.800 8.400 "“0.230 -9.650 5.324 /7 7.77ZZ77...-'Z.7/:7 CASE 183 0.012 1.679 -I.OOO"~0.155 -0*143 '-"7-Z'- CASE 183 7 '■/1679:77.0.036 16.000 -0.018 .7'-^.7;Z CASE 183 A ..---»1 A .-.-//'7 Z 7 ...। .. CASE 184 294.600 5 000 ,1.000 4.000 -•■•'•/l2/506:'7:"7-?''7" CASE 184 10.900 8.450 0.170 9.650 5.935 /7 /-:-; '.CASE 184 6.010 1679 71.000 ”0155 *0-145 '7?'-—7’/:-/^7 7 -./.- CASE 184 7 1679 '6*030 16.000 7 -0.020 \777f ?./7 '/■/■■ r ’CASE 184 '."_.'‘.-rs. CASE 185 301.660 5\006 ’:0.000 <t 4.000 7.000 /77.;'/Z;;7..77'':'Z CASE 185 11*700 8/250 Gold 7 9.826 r-^;2.586 :77-..'/77-. CASE 185.0.000 2.455 1000 0.106 -0.106 7-/7-77: CASE 185 '7:2.455 0.0201 -16.006 -0.020 //..7; CASE 185 f V ;- CASE 186 301.000 5.000 i.ooo 4.000 :-.7 6.000 CASE 186 11.600 8.250 o.o io 9.858 2.407 CASE 186 0.000 2.630 1.000 0.090 .-0.099 CASE 186 2.630 0019 16.000 -0.019 CASE 186 . :3.500CASE18731E0005.000 0.000 8.500 CASE 187 10.300 8.300 0.0 10 9.778 3.219 /' CASE 187 0.000 2.213 ’uboo 0.117 L -0.117 ' CASE 187 2.213 0.023 16.000 -0.022 CASE 187 ivoo6 3.500CASE188311.000 5.000 8,500 CASE 188 10.400 8.300 0.010 9.778 3.219 ' CASE 188 0.000 2.213 1.000 0.117 :-6.117 V - CASE 188 2.213 0.023 16.000 ^;;;-6.022;;<;-'.- CASE 188 CASE 189 329.000 5 000 0 000 2.000 '5.000 CASE 189 12.000 8 250 0 020 91890 2.240 CASE 189 0.000 2818 1.000 0.092 .'-0.092 . CASE 189 2.818 0.0 18 16.000 -0.017 I.: CASE 189 *-2.000CASE190329.000 5.000 i.ooo 5.200 .< CASE 190 nlooo 8.200 0.030 9 884 <2;630 ' CASE 190 0,001 2.780 i.boo 0 094 -0.093 ." CASE 190 21780 01018 16.000 -0.017 '-"V . CASE 190 8.000 7.200CASE191104.000 6.000 0.000 CASE 191 10.400 7.850 0.172 9.820 1.061 <' CASE 191 0.002 2.421 1.084 0.099 -0.097 ' CASE 191 -2.421 0019 16.000 -0.017 . CASE 191 -8.000 6.700 \--CASE 192 104.000 61000 1.000 CASE 192 11.000 8.000 0.170 9.836 :1.439 - CASE 192 0;002 2.506 1.000 0.104 -0.101 CASE 192 2.506 0.020 16.000 -0.018 "■ CASE 192 '; 0.000 4.500CASE193129.000 6.000 10.000 CASE 193 9.600 8.350 0.240 9.730 <-4.002. CASE 193 0.010 1995 1.000 0.130 -0.121 CASE 193 1.995 0.025 16.000 -0.615 -I/:; CASE 193 . 6 000 4.500CASE194129.000 1000 9.000 CASE 194 11.200 8.450 0.210 9.762 4.649 CASE 194 0.010 21138 1.000 0 122 ^0.112 CASE 194 /■2.138 0.023 16.000 -OiOW CASE 194 148.000 6.000 17.500 -CASE 195 0.000 4.500 CASE 195 10.600 8;400 0.061 9.490 7.517 -0;214 :CASE 195 0.005 1.189 1.000 0.219 CASE 195 1.189 0,042 16.000 ?■^-0.037 CASE 195 6.000 1.000 '4.500CASE196148.000 :/l'’4O.8O6 , ' CASE 196 11.300 8.650 0.027 9.704 ..8.107 CASE 196 0.002 1.888 1.000 6.138 -0,136 :/--■/ CASE 196 -/1.888 0.026 16.000 -0 024 . ’' case;196 0.000 17.166CASE197160.000 6.000 5.000 CASE 197 10.500 8.750 o.oio 9.503 :15.015case1970.002 1.222 i.ooo 6.213 -0.211 CASE 197 1222 0.041 16.000 .-0,039 x'.VCASE197..- CASE 198 160.000 6.000 1.000 5.000 :17 000 -A;/?:.\ CASE 198 10.500 8.750 0.010 9.506 14.922 CASE 198 0.001 1.230 1.000 0.211 -6.210 ;- CASE -198 .1.230 6.041 16.000 -0.039 CASE 198 .A x 1 .- CASE .199 176.000 6.000 0.000 5.000 21.500 CASE 199 8.600 8.650 .0.010 9.362 16.254 -'v: CASE 199 0.002 0.902 1.000 0.288 -0.287  ' CASE 199 CASE 199 CASE 200 7 176.000 CASE 200 9.400 CASE 200 0.002 CASE 200 CASE 200 . CASE 20 1 195.000 CASE 201 9.150 CASE 201 6.002 CASE 201 CASE 201 . CASE 202 195.000 CASE 202 7.800 CASE 202 6.002 CASE 202 -~« CASE 202 /CASE 203:209.000 CASE 203 8.500 CASE 203 0.003 CASE 203 CASE 203 CASE .204 209.000 : CASE -204.-6.800V CASE 204 0;006 CASE 204 1.000 6.000 8.750 1.109 1.109 0.050 :1.0000.010i.ooo 0.045 16.000 5.0009.4586.234 16.000 -Q.Q48 18;50016.380-0.233-0.043 6.000 8.5500.7081.000 0.000 0 010i.ooo6.05b I 47000 9.250 0.367 16.000 25 000 16.634-0.366 -0.048 -':"'1 6.0008/4006.813 <1.000 1.000 0.020 1.000 0.050 4.000 9.3146.320 16.000 23.000 10 865 -0.318-6l048 ,/... 6.000 -8,500 \0.73321.000 0.0006.020i;o6o 0.050 4.060 9.2666.355 16.000 24.50014.632 -0.352 -0,047 ./’■ ......A._..-r;. 6.000 -8.400 0.966 . 1.000 / 1.000 0.060 1.000- 0.050 4 1boo 9.394h0.269 16.000 20.500 9.206 -0.264 -0.044 -J .. '■7V7 '■-<V 7 -7 .- -J -: '"-"j -'7 '■7.-'-^'7>'.7 CASE 204 - -.r CASE 205 223.000 6 000 0.000 4.500 25,000 CASE 205 9.000 8.650 0.056 9/250 20.076 CASE 205 6.611 0.708 1:000 0.367 -0.356 CASE 205 .1.000 0.050 16.006 -0.039 CASE 205 CASE 206 223.000 6.000 1.000 7 4.500 23.500 CASE 206 9.000 8.550 0*046 9.298 15.157 CASE 206 0 007 0.785 1.000 0.331 -0.324 CASE 206 1.000 0.050 16.000 -0.043 CASE 206 .'>>.'_ CASE 207 237.000 6.000 7 0.000 7.000 18.500 CASE 207 7.700 8.050 0.010 9.458 3.761 CASE 207 0.000 1.109 1.000 0 234 ^-0.234 CASE 207 *7 ''.1.109 0.045 16.000 7 -0.045 ; CASE 207 CASE 208 237.000'6.000 1.000 77.666 7 15.500 CASE 208 7*400 8.050 0.021 9v554 3.038 CASE 208 0.001 1.365 1.000 0.191 -07190 CASE 208 1.365 0*037 ..7 16.000 -0.036 CASE 208 -■ CASE 209 251.000 '6.000 0.000 5.500 18.000 CASE 209 8.300 8.100 0.010 9.474 4 055 CASE 209 0.660 1.148 1.000 0.226 -6.226 CASE ,209 1.148 0.044 -16 006 -6 043 CASE 209 CASE 210 251*000 .6.000 7 1.000 5.500 18.500 CASE 210 8.300 8.200 0.010 9.458 5*232 CASE 210 0.001 1,109 1.000 0.234 >0.234 CASE 210 1.109 7 0.045 16 000 -0.045 CASE 210 ;.-- CASE 211 -258.000 6.000 0.000 7 4.000 18.800 CASE 211 8.650 8.600 0.010 9.448 12*417 CASE 211 6.001 1.086 1,000 0.239 -0.238 ? CASE 211 1.086 0.046 :.16.000 -0.045 CASE 211 CASE 212 -258.000 6.000 1.000 -4.066 "18.800 CASE 212 8.700 8.600 o.oio 9.448 12.417 CASE 212 ?-6.001 1.086 1.000 0.239 -0.238 CASE 212 ...1.086 0.046 16.000 -0*645 CASE 212 CASE 213 265.000 6.000 0.000 5*000 17.500 CASE 213 8.600 8.450 j 0 060 9.490 8.358 CASE 213 0.005 1.189 1.600 0.219 -0.214 CASE 213 -1.189 -0.042 16.000 -6.037 CASE 213  CASE 214 265.000 6.000 17000 5.000 17.806 CASE 214 8.700 8.500 0.035 9.486 9.471 CASE 214 0*003 1.164 1.000 0*223 -0*220 CASE 214 1*164 0.043 16.000 -6.040 CASE 214 'a* CASE 215 272.000 6.000 0.000 4.000 17.000 CASE 215 8.300 8.450 0.030 9.506 8.080 CASE 215 0.002 1.230 1.000 O:2117 -0.209 CASE 215 1.230 0.041 16.000 -6.038 CASE 215 . ;CASE 216 272.000 6.000 1.000 7v'->.obo'?7-17.500 CASE 2 16 8.300 8.400 0.020 9*490 7.517 CASE 216 0*002 1.189 1.000 7 0.219 >6;2 17 CASE 216 1.189 0.042 16.000 .^.041 , CASE 216 ;' ;_ CASE 217 280.000 6.000 0.000 5.000 15.900 CASE 217 9.100 8.150 0.010 9.541 3.904 CASE 217 0.000 1.327 1 .000 0.196 -0.195 CASE 217 1.327 0.038 16.000 -0.037 CASE 217 .* CASE 218 280.000 6.000 1.000 5.000 16 000 CASE 218 9.200 8.450 0.010 9.538 7*549 CASE 218 0;001 1.318 1.000 0.197 >0.196 CASE 218 1.318 0.038 16.000 -O.O37 CASE 218 ....... CASE 219 287.000 6.000 0.000 5.000 12.000 CASE 219 10*200 8.550 0.110 9.666 -7.112 CASE 219 0.008 1.738 1.000 0.150 -0*142 CASE 219 ...1.738 0 026 16.000 —6.021 CASE 219 CASE 220 287.000 6.000 1.000 5.000 12.000 CASE 220 10.200 8.550 0.100 :9:666 7.112 CASE 220 0.007 1.738 1*000 s 0.150 7 -0.143 r CASE 220 1.738 6.029 7 16.000 -0.022 CASE 220 *7'’.- CASE 221 294.000 '6.000 10.000 6.000 12.500 CASE 221 10.000 8.250 0.015 9.650 3.829 CASE 221 6.001 1.679 1.000 0.155 -0.154 CASE 221 '.1.679 0,030 16.000 -0.029 .CASE 221 >.----_ CASE 222 294.000 6.000 1.000 6.000 12*100 CASE 222 9.800 8.350 0.015 9*663 4.640 CASE 222 0 001 1.726 1.000 0:151 -0.1507 CASE 7 222 1.726 0.029 16.006--0.028 CASE 222  CASE 223 301.000 6.000 0.000 8.000 10.500 CASE 223"11.000 8.150 0.010 9.714 2.656 CASE 223 0.000 1.928 1.000 0.135 -0.135 NN -————O OOO O © ©©©©-4 N NOd ©G G G G G G GA A A A *OWWWttW NNMN ————Q O O O O *0 «0 ©©<0 G G G G G *4 -4 *4 -4 NddO G G G G G G *A A CO W co.o ©ooa p o G 888NpO 888 888COooaoo o o o N N CO -4 NN®O>NNGG MM®0»a G GNNGN N N CO G 8 88 8 CO «8 8O©O ©O OOO "'O -*O o.O-a '©—O —O .©-a o QO O O N O ©O ©o o o :©O O © p ©O O OOp O ©O A O OddO OWAO o g a o o ©©N -4 ©O N G GG N©AO W —GO CO ;O 0NCO W—N—©. 8o O CO O :OOONOO ,888OOO ©©GO O A CO O ©AGO O O O O G G WONNGOwopoNNOOGGOO ONO §b©o o—o o OOPp Oppp O0PO 8888pcooo « oo-858’o o o o —o — .do ©G OO ©O OOP N G O ©N ANOO©—NOO© 888 ©W dO(OW OO©A GO©A goP> O —OO 8828pop© ©OOO ©OOP I I N N I I NN I I -a N00-0 POOP 0 0 -4N 5 2 2 2 2 2 2 2 2222 22 222 22 22222 222222222222222 222222222 °°2 2 2 22 2 °°2 22222 ooonoooooonooooooooooonoooooo m m m m m m m m mm m m m m m m m m m m m m.m m m m.m m mm m m m m mm m m m mm m m m m m m m m m m m m m m m mm m m m m m m m m m m m m m m m.m mmmmmmmmmmmmmmmmmmmm 888 808-oo co o p G N—O G -4 AO ONG©GO ©OOOOOo®oo 2 8 B 8 8 h §83 88 8 388 8 3 88 8388©PAO N UI A ©©«A O ONOO ©O -4 O ©CO O ©©CO A © I I —N I I A —II -I |'l-r ^A.GOA N O OP ®OO©G O OP ®O O 01© 28 28 2888 8888 8838 8828 8828 88^8AOPOAOOO:—OO ©,©©/<3 ©-.O O O O OO©©OONO ii —O O NO S —o uiOUIoOUIoo OGG 8 a 8 —O O . 28 888888 28 8828 8828oooooopooppoo©oopo &'©'oG©©G © 88 288 888©O -apo NO© S 8 ‘88 3 8 288 8 2 888 2888NO©GG0 GGGO GUI NO G S N © 888 888WoO-a ©© _co co ui §n n ui § G G ©©©G O ©G G © © .-a G A'G ;©©©o ©©'8§8!888 88n8 2888 2888 8828 8828-‘~©O OO ©©©©o ©©©.G ©©© go©ag©Pago©a go©aa88§888 8 888 8 888 8 8 8 8 §B $8 8 B 5 8 8 3 8 8 8388 83 88 83 88A©ON AO ONNO ON N©©©O O .-~~——-—————-~— d OP ®OOP®G O PG G 8388 8 =^8 8S88 8888 8^8 8B88 ‘8328 8OGPo©GAO OPGO OpGO ON NO ©NN O -—--- 8888 8288 8288©GO O ©A o©o -a O O I I I I II II©ON G p ©NG ©ON P ©©N © 2 o 8 8 2 -£8 ;2 g 3 8 2 8 3 8 8 3 8 8 8 S 8 8N®dO ©©AO GG-ap GG-a O W —C-3 “—V.- O©8 o©8 OG0» O —©—O 88 28 8POOOG —N LI—NAGOOUIG ©GN OOGN 3388 83^8 5iS«S 8^^OOOO OOOOGGOO——OO ©OOO O CM CM »ioo CM to ©Ootobbtoboo O*'—b'-'8388 8388 b to —o b *to 6 bo^o o o id o b *b o88n88S288828882883S8r-b’obwo boino;o»to oobo b»*o bto*b Oto —b888888888888888828888888888888 b o irt o.i bj^'W b.--.b.88^8 83-8 § *p b to *Ob to to ob to *o o to ooo®o bb ’bob bbooto.o o o »8583 85 88 8588 8388 838888888888888888 b -o o o -o o —oo—o o b b oo®b?p b o ototo o OOM 8R8 888888888 8 ooo r-bo 8toCM OOO OOOOO toCM boor-8588 o O to to o oo o88228822oo®o88P8 b to *b««88 o8 888 .oddcoCM Oto toO .O:85^8 g O —O 8 8 oooo oooo o Oto to oototootooOQtooOOtototoQptotoo*— —o *——o to o o o F -O o oo o o885o .888r^od»—CM : oo *ooo1r;cm —i i UI UI Id id Id UI Id id UI UI UI Id Id UI UI Id Id Id Id Id Id Id UI UI UI Id id Id Id UI UI UI Id UI Id Id Id Id Id Id Id UI Id UI Id Id Id id UI Id id Id UI Id Id Id Id UI Id Id Id Id UI Id id id Id Id id Id Id UI id Id Id UI Id Id Id Id Id UI Id UI Id Id Id UI UI UI Id UIId UI2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222 F F y b to to o o to o o o cm »o o w o <j>o to to o8858 oooo oooo oor-M8?pp am O o to80OCMO ’id d o ’ toCM o b ®»>8 8 ton, O O CM888 . ’to too ’ toCM o b o to o boo85888588 O O CM N88SS ^boto -N 'O’ o to to too—to to 6 b —b —6 -d oo —o cm cm cm cm cMWtotototo'e**-e to to to to.to bbb b b r-F r-r*r-to »to totoooobobo o o o —.to to to to to to to to to to to to to to to to to to to to to to to to to to to tototototototototototototo b b b b b bCM CM CM CM CM CM CM CM CM CM CM CM CM (M CM CM CM CM CM CM CM CM CM CM CM CM CM CM N CM CM CM CM 8 CM 8 CM CM N CM CM 8 8 8 CM CM 8588 8S88.—b —d :o’b —b bbbo o:8888 8d—b p.’ obo885doo o to —o b to o b o r-*r-b cm b r-o w d-o *o o o *b b885888-8 88 £8 8 ?e g g 8 88 £S 0 0 —0 ,CM»O CMbOr--r--■ CM CM  OOOO b b o im*b to wooo toboo ®®oo oooo 6-P b 4 o o o w oOo —oo o —8S83 8S88 ob —b cm*b ——b o —to—bto**o —r-to 00**00**§8 8S88 CO m3 8383 8388 o6ok oboh boocM -,-8383 ms 8^33 8888 8858 —too —®o ®oo ®oototobbCMCMCM CM 00-0 —0—0 .oo.b®bo oooo 6—Oto or-bo ooow2rogsg888885888583 o b o to N o o io cm ob to to o b to to b b to to o o to doo toy.v **. OO—OO—OOTOOOOOQOOCotoootooo—c o o —o o —888 888 t oo ’’*doo—o —CM CM to O O CM800-otooo’’ ’d o o J bb *boto *btoto ^obp.to toobto ..CASE CASE CASE 261 261 261 11,800 0.000 8.250 2.455 2.455 0;010 1.000 0.020 :9,826 0.106 16.000 CASE 261 'v . CASE 262 301.000 7.000 1.000 2.000 CASE 262 j 1.600 8.250 0.010 9.826 CASE 262 0.000 2.455 1.000 0.106 CASE 262 2.455 0.020 16.000 CASE 262 CASE 263 311.000 7.000 ?0 000 4.000 CASE 263 TO.000 8.300 0.010 9.762 CASE 263 0.000 2,138 1.000 0.122 CASE 263 2.138 0.023 16.000 CASE 263 CASE 264 311.000 7.000 1.000 4.000Case264io.loo 8.350 0.010 9.778 CASE 264 0.000 2.213 1.000 0.117 CASE 264 *.2.213 0.023/16.000 CASE 264 J ''* CASE 265 329.000 7.000 0.000 1.500 CASE 265 12.200 8.250 0.010 8.610 CASE 265 0.003 0.708 1.000 -0.367 CASE 265 1.000 0.050 16.000 CASE 265 CASE 266 329.000 :7.000 1000 1.500 CASE 266 12.200 8 250 0.010 9,912 CASE 266 0.000 2.958 1.000 0.088 CASE 266 '''..2.958 0.017 16.000 CASE 266 '_*—CASE 267 104.000 8.000 0.000 2.000 CASE 267 ,11.600 0.112 9.727 CASE 267 .■1.982 .. CASE 267 .1.982 . CASE 267 CASE 268 160.000 8.000 0.000 3.000 CASE 268 10.400 8.300 0.020 9.474 CASE 268 0.001 1;148 1.000 0.226 CASE 268 1.148 ;0.044 16.000 .CASE 268  CASE 269 176.000 8 000 0.000 2.500 CASE 269 8.900 8.550 0.010 9.298 CASE 269 0.002 0.785 1.000 0.331 CASE 269 1.000 0.050 16.000 CASE 269 - CASE 270 195.000 8.000 0.000 3;000 CASE 270 8.500 8.450 0.0 10 ’9.180 CASE 270 0.002 0.708 1.000 0.367 CASE 270 1,000 0.050 16 000 CASE 270 CASE 271 209.000 8.000 OiOOO 3.000 CASE 271 7.400 8.350 -0.030 /9,224 / CASE 271 6 004 0.708 ;1.000 0.367 CASE 271 1.000 .0.050 16.000 CASE ,271 CASE 272 223.000 8.000 0.000 3.000 CASE 272 9.800 8 650 0.060 9.234--CASE 272 0 012 0 708 1.000 0.367 CASE 272 r,ooo 6.050 16.000 CASE 272 :*, CASE 273 237.000 8 boo 0.000 3 boo CASE 273 7.800 8.350 0.017 -:?9.474:/ CASE '.273 '/-0.001 1.148 1000 0.226 CASE 273 1.148 :0.044 16.000 / CASE 273 ... CASE 274 251.000 8.000 0.000 3.000 CASE 274 9,000 8.450 0.010 9.448 .1 CASE 274 0.001 1.086 1.000 0.239 CASE 274 1.086 0.046 16.000 CASE 274 -CASE 275-258.000 8.000 0.000 1.500 CASE 275 8;800 8.750 0.010 9.416 CASE 275 'p;002 1.014 1.000 0.256 CASE 275.1014 0.049 :16,000 CASE 275 '--- CASE 276 265.000 8.000 0.000 3.000 / CASE 276 8.000 8.200 0.040 9.474—-;CASE 276 0 002 1.148 1.000 0.226 CASE 276 1-148 0.044/16.000 CASE 276 CASE 277 272.000 8.000 0 000 /1i000 CASE 277 8.400'8.350 0.020 9.490 CASE 277.0.001 1.189 1.000 0;219 CASE 277 A 1.189 0,042 16 000 CASE 277 .■ "S CASE 278 280.000 8.000 o.obo 1.000 CASE 278 10.700 8 650 :o.oio 9.541 CASE 278 0.001 1327 1.000 0.196 CASE 278 .E327 0.038 16,0b<3/; CASE;278 /k CASE 279 294000/8.000 ?0.000 2.500 CASE 279 10.400 -8.350 0 010 9.602 CASE 279 0,001 1;514 1.000 0/172 CASE 279 .1.514 0.033 16.000 CASE 279.:: ../-?/ /./. 2.586 -0.106 -0.020 7.000 2.586 -0.106 -0.020 9.000 3.336-0.121 -0.023 8 500 3.598 -0.117 -0.022 45.000 30.387 -0.364-0.047 4.3002.129 -0.088-0.017 10100 18.000 6.278 -0.225 -0.042 23.500 15.157 -0.330 -0.048 27.20015.710 -0.366 -0.048 25;800 11.781 -0.364 -0.046 25.500 20.674 -0 355 -0 038 18 000 6.991 -0.225 -0.042 18.800 9.121 -0.238-0.045 19.800 17.734 -0.255 -0 048 18.000 5.052 -0.224 -0.042 17.500 6.755 -0.217 -0.041 15 900 1' 1 1 ;384 -0.195 -0.037 S 14.000 .5.301/-0 171 "-0.033 .-/x -.X //"‘/ \ CASE 280 301.000 8.000 0.000 2 000 6.000 ;;—///<■■' CASE 280 11.800 8.000 0.010 9.858 -1.368 CASE 280 0.000 2.630 1.000 0.0d9 >-0.699 CASE 280 2.630 0.019 16.000 ’■-0.019 CASE 280 i*8.000 2560CASE281311.doo 0.000 10.000 -,■ CASE 281 10.400 8.250 0015 9.730 -3-..205 . CASE 281 0.000 1.995 1.000 0.130 -0.130 :' CASE 281 .:1.995 0.025 16.000 -0.025 >/--^'■:'' CASE 281 *. 8.000 0.000 \-. CASE ;282 329 000 1.500 '5.500' CASE 282 12.400 8.250 0.010 9.874 2.322 '■ CASE 282 /0.000 2.723 1.000 0.095 . '-*0.095 ' CASE 282 2.723 0.018 16.000 >-0.018 >./".':,- CASE 282 - 9.000 4.500-CASE 283 104.000 0.000 <10.500 ; CASE 283 11.200 8.370 0.023 9.714 <4.333 CASE 283 0.001 1.928 1.000 0.135 -0.134 . CASE 283 1.928 0.026 16.000 -0.025 /■, CASE 283 ''<1.000 4.500 .... CASE 284 104.000 9.000 '9;000 . CASE 284 10.500 :8.400 0.039 9.762 4..164 CASE 284 0:002 2.138 1.000 0.122 -0.120 CASE 284 /.2.138 0.023 16.000 --0.022 CASE 284 9 000 4.000CASE285160.000 0.000 18.000  CASE 285 8.500 8.050 0.060 9.474 ,3.630 CASE 285 0;002 1,148 KOOO 0.226 '-0.224 . CASE 285 1.148 0.044 16.000 -0 041 .'>//> CASE 285 1.000 4 000CASE286160.000 9.000 18.000 '? CASE 286 8.400 8.100 0.060 9.474 4.055 CASE 286 0.002 1148 1.000 0.226 ;—0.224 .._■ CASE 286 -/1.148 y 0.044/16 000 -0.041 .":-'' CASE 286 3.560 26.500 ?.'?'::■ CASE 287 195.000 9.000 0.000 CASE 287 8.500 8.550 0.010 9;202 18.223 '■'x .CASE 287 0.002 0.708 1.000 0.367 -0.365 >-/ ' CASE 287 ’ *-*1.000 0.050 16.000 -0,048 CASE 287 0.000CASE288209,000 /9.000 2.500 27.000 CASE 288 8,300 8.650 0.010 9.186 22.545 CASE 288 0.002 0.708 1.000 0.367 -^6.365 CASE 288 -*1.000 0.050 16.000 -0.048 .-<■ CASE 288 k. 1.000 .23.500CASE289209.000 .9.000 2.500 CASE 289 8.506 8.600 0.030 9.298 /16.698 CASE 289 0.005 0:785 <1.000 0.331 -0.326 '  CASE 289 1.000 0.050 16.000 -0,045 /;■/ CASE 289 CASE 290 223/000 9.000 0.000 2.000 25.500 /":-' CASE 290 12.300 8.900 0.076 9.234 31;668  ' - CASE 290 0.024 0.708 tooo 0.367 -0.343 ’ CASE 290 /.1.000 0.050 16.000 -0.026 'X CASE 290 2.000CASE291223.000 9.000 1.000 .24.300 X,CASE 291 -7.800 8.050 0.217 9.272 .5.664—CASE 291 0.012 0.743 1000 6.350 -0.338  '' CASE 291 1.000 0.050 16.000 -0.038 ..>■/>■CASE 291 2.000CASE292237.000 9.000 0.000 21.000 CASE 292 7.500 8.600 0.052 9.378 14 290 .J,'. Case 292 0.007 0.933 1.000 0.279 /--0.271:>';>■-' CASE 292 L 1000 0.050 16.000 -0.P43,//- CASE 292 ‘>X . 2.000 .....\- CASE 293 237.000 9.000 nooo 18.000 y CASE 293 7.700 8.400 0.146 9.474 "7^777  CASE 293 0.011 1.148 1.666 .0;226 -6.215 /■■ CASE 293 1.148 0.044 16.000 -0.032 ;Z;" CASE 293 . 0.000 "2000 7CASE294251.000 9.000 17.500 '■//' CASE 294 9.200 8.500 0.010 9.490 9.283 '-«■ CASE --294 0.001 1.189 1.000 0.219 CASE 294 ’1189 >0.042 16 000 -0.041 /.'/''i:'//: CASE 294 9.000 v'. 2.000 .17:500 -..._-.,--J._ CASE 295 251.000 bOOO—CASE 295 9.500 8.550.0.010 9.490 10/299 CASE 295;./.,.O;661 ;1.189 1.000 0.219 -o ils x.//':- CASE 295 1.189 0.042 16.000 -6.641//CASE 295 »'1 2.500  CASE 296 258.000 9.000 0.000 ' '19,000 1 CASE 296 9.100 8.600 6.010 9.442 .12.578 X CASE 296 0.001 1.072 :lSpo 0.243 -0.241 '//.7-7...-..: CASE 296 ''-1.072 /6.047;:/16.000 >-0.045 X../:CASE 296 x -y .;:.... 2.500 /-CASE 297 258.000 9.000 'i;6do 18.500 ''■< CASE 297 8.900’8.550 0.010 9.458 /,11.000 CASE 297 0.001 1.109 1.000 0.234 16.000 / -0.233 X/X /" CASE 297 :-1.109 0.045 -0.044 ^X/x/XX :CASE 297 >..9>000 'J /'A ‘7. CASE 298 265.000 0/000 “2 boo :i9iOO0 /■■/••.:. CASE 298 6.700 ^8.200 0.100 9/442 :5.418 ' CASE 298 0,005 1,072 1.000 ?0.243 x-0.237 '/’/‘ CASE 298,xx 1.072 0,047 ..;16.600 /A -0.041 ?./;:>:/;>>/>'x..■ s _...-f?.'1 VVfe '/'' :’s-.-X:.-.''-.:'/...'.S .'X *f X ’/:1 CASE 298 CASE 299 265 000 9.000 1.000 2.000 19.000 CASE 299 6 700 8.450 0.090 9.442 9.244 CASE 299 0 008 1,072 1.000 0.243 -0.234 CASE 299 1.072 0.047 16.000 -0.038 CASE 299 CASE 300 272 000 9.000 0.000 2.500 16.000 CASE 300 8 100 7.900 0.030 9.538 2.250 CASE 300 0 001 1.318 1.053 0.187 -0.187 CASE 300 1.318 0.036 16.000 -0.035 CASE 300 CASE 301 272 000 9.000 1.000 2.500 16 000 CASE 301 8 100 8.250 0.030 9,538 4.900 CASE 301 0 ooi 1.318 1.000 6.197 -0.196 CASE 301 1.318 0.038 16.000 -0.036 CASE 301 CASE 302 280 000 9.000 0.000 3.500 15.500 CASE 302 8 900 8.400 0.010 9.554 6.555 CASE 302 0 001 1.365 1.000 0.191 -0.190 CASE 302 1.365 0.037 16.000 -0.036 CASE 302 CASE 303 280 000 9.000 1.000 3.500 15.800 CASE 303 8 800 8.400 0.010 9.544 6.691 CASE 303 0 001 1.337 1.000 0.195 -0.194 CASE 303 1.337 0.037 16.000 -0.037 CASE 303 CASE 304 287 000 9.000 0.000 2;000 10.500 CASE 304 10 400 8.550 0.010 9.714 6.415 CASE 304 0 001 1.928 1.000 0.135 -0.134 CASE 304 1.928 0.026 16.000 -0.025 CASE 304 CASE 305 287 000 9.000 1.000 2.GOO 11.000 CASE 305 10 400 8.550 0.010 9.698 6.640 CASE 305 0 001 1.862 1.000 0.140 -0.139 CASE 305 1.862 0.027 16.000 -0.026 CASE 305 CASE 305 294 000 9.000 0.000 3.000 13.000 CASE 306 9 200 8.480 0.010 9.634 6.555 CASE 306 0 001 1.622 1.000 0.160 -0.160 CASE 306 1.622 0.031 16.000 -0.030 CASE 306 CASE 307 294 000 9.000 1.000 3.000 12.800 CASE 307 9 500 8.400 0.010 9.640 5.437 CASE 307 0 001 1.644 1.000 0.158 -0.158 CASE 307 1.644 0.030 16.000 -0.030 CASE 307 CASE 308 301 000 9.000 0.000 3.000 5.500 CASE 308 12 400 8.250 0.010 9.874 2.322 CASE 308 0 000 2.723 1.000 0.095 -0.095 CASE 308 2.723 0.018 16.000 -0.018 CASE 308 CASE 309 301 000 9.000 1.000 3.000 5.500 CASE 309 12 400 8.250 0.020 9.874 2.322 CASE 309 0 000 2.723 1.000 0.095 -0.095 CASE 309 2.723 0.018 16.000 -0.018 CASE 309 CASE 310 311 000 9.000 o.ooo 4.500 6000 CASE 310 10 900 8.350 0.010 9.858 3.011 CASE 310 0 000 2.630 1.000 0.099 -0.099 CASE 310 2.630 0.019 16.000 -0.019 CASE 310 CASE 311 311 000 9.000 1.000 4.500 5.500 CASE 311 10 200 8.350 0.010 9.874 2.905 CASE 311 0 000 2.723 1.000 0.095 -0.095 CASE 311 2;723 0.018 16.000 -0.018 CASE 311 CASE 312 104 000 10.000 0.000 5.000 8.400 CASE 312 10 400 8.150 0.080 9.781 2.284 CASE 312 0 002 2.228 1.000 0.117 -0.115 CASE 312 2.228 0.022 16.000 -0.021 CASE 312  CASE 313 104 000 10.000 1.000 5.000 8.000 CASE 313 10 600 8.150 0.080 9.794 2;219 CASE 313 0 002 2,291 1.000 0.113 -0.112 CASE 313 2.291 r 0.022 16.000 —0.020 CASE 313 CASE 314 129 000 io.ooo 0.000 2 000 13.500 CASE 314 9 550 7.850 0.160 9.618 1.677 CASE 314 0 003 1.567 1.084 0.153 -0.150 CASE 314 1.567 0.029 16.000 -0.027 CASE 314 - CASE 315 129 000.10.000 1.000 2.000 12.800 CASE 315 9 950 8.350 0.080 9.640 4.874 i CASE 315 0 004 1.644 1.000 0.158 -0.154 CASE 315 1.644 0.030 j 16.000 -0.027 CASE 315 CASE 316 148 000 10.000 "0.000 2.500 15.500 CASE 316 10 200 .-7.100 0.239 9.554 0.350 CASE 316 0 001 1.365 2.396 0.080 -0,079 CASE 316 1.365 0.008 31.899 -0.007 CASE 316 CASE 317 148 000 10.000 1,000 2.500 13.500 CASE 317 11 000 8.200 0.259 9.618 3.679 CASE 317 0 010 1.567 1.000 0.166 -0.156 CASE 317 1.567 0.032 16.000 -0.022 CASE 317 CASE 318 160.000 10.000 0.000 3.000 18.200 CASE 318 9 .600 8.650 0.070 9.468 13.209 CASE 318 0.009 1.132 1.000 0.230 -0.220 CASE 318 1.132 0.644 16.000 -0.035 CASE 318 CASE 319 160.000 10.000 1.000 3.000 18.000 CASE 319 9.600 8.650 0.050 9.474 13.041 CASE 319 0.008 1.148 1.000 0.226 -0.219 CASE 319 1.148 0.044 16.000 -0.036 CASE 319 3.000 22.000CASE320176*000 10.000 0.000 CASE 320 8.500 8.150 0.020 9.346 5.987 CASE 320 0.001 0.871 1.000 0.299 -0.297 CASE 320 1.000 0.050 16.000 -0.049 CASE 320 CASE 321 176.000 10.000 1.000 3.000 21.500 CASE 321 8.700 8.250 0.090 9.362 7.173 CASE 321 0.006 0.902 1.000 0.288 -0.282 CASE 321 1.000 0.050 16.000 -0.044 CASE 321 26.000CASE322195.000 16.000 0.000 5.000 CASE 322 8.850 8.450 0.230 9.218 14.574 CASE 322 0.034 0 708 1.000 0.367 -0.334 CASE 322 1.000 0.050 16.000 _-0.016 CASE 322 CASE 323 195 '000 10.000 1.000 5.000 23.500 CASE 323 8.300 8.150 0.458 9.298 6.640 CASE 323 0.030 0.785 1.000 0.331 -0.301 CASE 323 1.000 0.050 16.000 -0.020 CASE 323 CASE 324 209.000 10.000 0.000 2.500 25.500 CASE 324 6.200 7.900 0.320 9.234 4.429 CASE 324 0.014 0.708 1.053 0.349 -0.335 CASE 324 1.000 0.047 15.000 -0.033 CASE 324 CASE 325 209.000 10.000 1.000 2.500 23.500 CASE 325 6.400 8.150 0.270 9.298 6.640 CASE 325 0.018 0.785 1.660 0.331 -0.313 CASE 325 1.000 0.050 15.000 -0.032 CASE 325 0.000CASE326223.000 10.000 4.000 25.500 CASE 326 10.000 8.700 0.333 9.234 22.625 CASE 326 6.075 0.708 1.000 0.367 -0.292 CASE 326 1.000 1.000 0.050 16.000 0.025 CASE 326 CASE 327 223.000 10.000 1.000 4.000 24.000 CASE 327 9.400 8.450 0.558 9.282 12.834 CASE 327 0.072 0.759 1.000 6.343 -0.271 CASE 327 1.000 0.050 16.000 0.022 CASE 327 1*000 CASE 328 237.000 10.000 0.000 3.000 20.000 CASE 328 7.900 8.250 0.202 9.410 6.471 CASE 328 0.013 1.000 1.000 0.260 -0.247 CASE 328 1.000 0.050 16.000 -0.037 CASE 328 CASE 329 237.000 10.000 1.000 3.000 17.000 CASE 329 7.200 8.150 0.014 9.506 4.220 CASE 329 0 .00 1 1.230 1.000 0.211 -0.211 CASE 329 1.230 0.041 16.000 -0.040 CASE 329 - CASE 330 251.000 10.000 0.000 3.000 18.500 CASE 330 9.200 8.250 6.230.'9.458 5.833 CASE 330 0.013 1.109 1.000 0.234 -0.221 CASE 330 1 ;109 0.045 16.000 -0.032 CASE 330 -. 1.000 18.500CASE331—251.000 10.000 3.000 CASE 331 9.200 8.150 0.200 9.458 4.690 CASE 331 0.009 1.109 i.ooo 0.234 -0 225 CASE 331 1.109 0.045 16.000 -0 036 CASE 331 CASE 332 258.000 10.000 0.000 3.000 19;500 CASE 332 9.400 8.650 0.240 9.426 14.346 CASE 332 0.034 1.035 1.000 0.251 -0.217 CASE 332 1.035 0.048 16.000 -0 014 CASE 332 <- 1.000 19.000CASE333258.000 10.000 3.000 CASE 333 9.500 8.600 0.160 9.442 12.578 CASE 333 0.020 1.072 1.000 0.243 -6.223 CASE 333 1.072 0.047 16.000 —0.027 CASE 333 3.500CASE334265.000 10.000 0.000.18.500 CASE 334 8.900 8.300 0.180 9,458 6.499 CASE 334 6.012 1.109 1.000 0.234 -0.223 CASE 334 1 109 0.045 16.000 -0.033 CASE 334 CASE 335 265.000 10^000 1.000 3.500 18.500 CASE 335 9.000 8.350 0.290 9.458 7.234 CASE 335 0.021 1.109 1.000 0.234 -0.213 CASE 335 1:109 0.045 16.000 -0.024 CASE 335 --; 15.500CASE336272.060 10.000 0.000 2.000 CASE 336 9.800 8.350 0.050 9.522 6.305 <008 8 a §a a O08 8 8 ££***£*"22222228222222 gga22222 222 222222 2222 22288 8 888888888888888 W W CO M m.—o §S§8o§§08 8o§8MOOMOOWO W O O M M CO -CO M MwW—O*J -J UI 0w w 00 OiOO o do o 0 —O —o -J o o o doom dpod ooow doow dooM/do 0 a d 6«*d o o 000 oou*oAmn Aono o o M d do vi do 00 M -4 OO d M O OO W O O d M O O A Mcod—p WOMWMO885i8So o M-o MpWocob’ o.o cJ J ui ococooo ow 880 o MM CO O NN«O OO M d 2888NOOO OOQOMOMOOOOO O O CO:888'MOO 808MOO W 0O—d o Q d O—O o —o o o 2'888MOO 3d8§8858coCOO O N-J OO O Q OOMOMOOOOO 88 28 "8888 2888NOOONOOOMOOO O —NCOO d W <0 O —MO—O888'O OO —M0—0888'o o o.O d o—o ocooo ONOoooMOO MMCO .*NN ®-NN ®O M M -J O M M CO O 0—0 0 0—0 —bob b b b—bmodo—o—ooooocoooo Mcopoo d d A QMMdOMMOO o —o—o —o o 88x8 885*8-000 —00 o f 1 —I I —I I >I IOO«d OOUOI o O d NJ 00 2538 2-338 2*38 58A—dO O-J*O O -J UI O d — Q Q Q o q q q q q q q q qqqqqq d q q q q q qq q q q q q qq q q q q q q q q q q q qq qo o o n o o o o o o a o b o o o o o o o do nd 0000000000000600000 6000 m m m m m m m.m mmmmmmoi m mmm m m mnm mm mmmmmnimnimrn mm mm mm m m m m m mmmmmmmmmmmmmmmm mm mmmmmmmmmmmmmmmmrnmmmmmmmmmmmm d .d o d ui a O <0 d d o o d d o o d d o 0 0 d o «0 mmooo ——oo w W —O d d AO-4 N d O NNOIO—.—OO <0OOO p —O—O—OO 8888 8888oopo—000 .CO.v -JOOOOOM O —COO 8 888 a 3 88 5SW 2558 235:8 8388 8535:8 8x88 Bids 8COO.—%O d —M O -J M -J O M «J M O -J ««J<M O “~“""“■—— -8 -8O—O p O 10 888 888' d OO—d O «0 WdOOWdO <0MdOOM18888888888888x288x28 8388 8388 8388.8388 8328 8328 8O-OMMP OMPO owpp 00,—O ONNO OMOO O w*0 0i0®0 0®®0 0000 OOOO OdOO OOAO OOdP OOdO OUI*O Od*O O 888 888WOOAOO 8838 8888 2288 2288 2288AAOO«00OO:——OO CO CO O O. M MaCO—COJSJOON 2888 2838 2838PdOO0000<0000 8 8828 S828 8828 2888OWO*sJ O M O O O d o o o 0 O A o kJ rf 8 8 8888 8888wwoooooooooo O NNUIO co -J A o CO CO W Q CO p «O _»—co —8 2238oAAOO CASE 355 11 400 8.150 0.417 9.714 2.656 CASE 355 0 011 1.928 1.000 0.135 -0.124 CASE 355 1.928 0.026 16.000 -0.015 CASE 355 CASE 356 160 000 11.000 0.000 5.000 17.500 CASE 356 10 400 8.600 0.050 9.490 11.412 CASE 356 0 006 1.189 1.000 0.219 -0.213 CASE 356 1.189 0.042 16.000 -0.036 CASE 356 CASE 357 160 000 11.000 1.000 5.000 16.600 CASE 357 9 900 8.650 0.040 9.519 11.915 CASE 357 0 005 1.265 1.000 0.206 -0.201 CASE 357 1.265 0.040 16.000 -0.035 CASE 357 CASE 358 176 000 11.000 0.000 4.500 21.000 CASE 358 8 450 8.550 0.010 9.378 12.937 CASE 358 0 001 0.933 1.000 0.279 -0.277 CASE 358 1.000 0.050 16.000 -0.049 CASE 358 CASE 359 176 000 1 1.000 1.000 4.500 18.500 CASE 359 9 450 8.650 0.010 9.458 13.465 CASE 359 0 001 1.109 1.000 0.234 -0.233 CASE 359 1.109 0.045 16.000 -0.044 CASE 359 CASE 360 195 000 11.000 0.000 4.500 25.500 CASE 360 8 900 8.450 0.010 9.234 14.122 CASE 360 0 001 0.708 1.000 0.367 -0.366 CASE 360 1.000 0.050 16.000 -0.049 CASE 360 CASE 361 195 000 11.000 1.000 4.500 22.800 CASE 361 10 200 8.600 0.010 9.320 15.993 CASE 361 0 002 0.824 1.000 0.315 -0.314 CASE 361 1.000 0.050 16.000 -0.048 CASE 361 CASE 362 209 000 11.000 0.000 5.000 24.500 CASE 362 8 400 8.400 0.030 9.266 11.983 CASE 362 0 004 0.733 1.000 0.355 -0.351 CASE 362 1.000 0.050 16.000 -0.046 CASE 362 CASE 363 209 000 11.000 1.000 5.000 19.500 CASE 363 8 300 8.450 0.030 9.426 9.558 CASE 363 0 003 1.035 1.000 0.251 -0.248 CASE 363 1.035 0.048 16.000 -0.045 CASE 363 CASE 364 223 000 11.000 0.000 4 500 25.000 CASE 364 9 400 8.550 0.053 9.250 16.634 CASE 364 0 009 0.708 1.000 0.367 -0.358 CASE 364 1.000 0.050 16.000 -0;041 CASE 364 CASE 365 223 000 11.000 E000 4.500 22.500 CASE 365 8 000 8.450 0.071 9.330 11.647 CASE 365 0 008 0.841 1.000 0.309 -0.301 CASE 365 1.000 0.050 16.000 -0.042 CASE 365 CASE 366 237 000 11.000 0.000 4.000 18^500 CASE 366 7 900 8.150 0.026 9.458 4.690 CASE 366 0 001 1.109 1.000 0.234 -0.233 CASE 366 1.109 0.045 16.000 -0.044 CASE 366 CASE 367 237 000 11.000 1.000 4.000 13.500 CASE 367 7 500 8.050 0.010 9.618 2.633 CASE 367 0 000 1.567 1.000 0.166 -0.166 CASE 367 1.567 0.032 16.000 -0.032 CASE 367 CASE 368 251 000 11.000 0.000 8.500 18.500 CASE 368 8 300 8.300 0.010 9.458 6.499 CASE 368 0 001 1.109 1.000 0.234 -0.234 CASE 368 1.109 0.045 16.000 -0.044 CASE 368 CASE 369 251 000 1 1.000 1.000 8.500 18.500 CASE 369 8 600 8.400 0.010 9.458 8.046 CASE 369 0 001 1.109 1.000 0.234 -0.234 CASE 369 1.109 0.045 16.000 -0.044 CASE 369 CASE 370 258 000 11.000 0.000 4.000 19.000 CASE 370 8 900 8.550 0.010 9.442 11.366 CASE 370 0 001 1.072 1.000 0.243 -0.242 CASE 370 1.072 0.047 15.000 -0.046 CASE 370 CASE 371 258 000 11.000 1.000 4.000 18.500 CASE 371 8 900 8.450 0.010 9.458 8.940 CASE 371 0 001 1.109 1.000 0.234 -0.234 CASE 371 1.109 0.045 16.000 -0.044 CASE 371 CASE 372 265 000 11.000 0.000 8.500 17.500 CASE 372 9 000 8.450 0.020 9.490 8.358 CASE 372 0 002 1.189 1.000 0.219 -0.217 CASE 372 1.189 0.042 16.000 -0.040 CASE 372 17.500CASE37326500011.000 1.000 8.500 CASE 373 8 900 8.450 0.020 9.490 8.358 CASE 373 0 002 1.189 1.000 0.219 -0.217 CASE 373 1.189 0.042 16.000 -0.040 CASE 373 CASE 374 272.000 11.000 0.000 5.000 16.500 CASE 374 9.300 8.450 0.030 9.522 7.811 CASE :374 0.002 1.274 1.000 0.204 -0.202 CASE 374 1.274 0.039 16.000 -0.037 CASE 374 CASE 375 272^000 11.000 1.000 17.000 CASE 375 9.000 8.500 0.030 9.506 8.977 CASE 375 0.003 1.230 1.000 0.211 -0.209 CASE .375 <■1.230 0.041 16.000 -0.038 CASE 375 16.100CASE376280.000 11.000 0.000 9.000 CASE 376 9.100 8.450 0.010 9.535 7.601 CASE 376 0.001 1.309 1.000 0.199 -0.198 CASE 376 1.309 0 038 16.000 -0.037 CASE 376 280^000 9.000CASE37711.000 1.000 16.100 CASE 377 9.200 8.500 0.010 9.535 ;8.450 CASE 377 0.001 1.309 1.000 0.199 -0.198 CASE 377 1.309 0.038 16.000 -0.037 CASE 377 CASE 378 287.000 11.000 0.000 10.000 14.500 CASE 378 9.600 8.450 0.010 9.586 6.813 CASE 378 0.001 1.462 1.000 0.178 -6.177 CASE 378 1.462 0.034 16.000 -0.034 CASE 378 CASE 379 287.000 11.000 1 .000 .10.000 14.500 CASE 379 9.500 8.500 0.010 9.586 7.582 CASE 379 0.001 1.462 1.000 0.178 -0.177 CASE CASE 379 379 1.462 0.034 16.000 -0.033 CASE 380 294.000 11.000 0.000 12.000 12.500 CASE 380 10.200 8.300 0.010 9.650 4.276 CASE 380 0.000 1.679 1.000 0.155 -0.154 CASE 380 1679 0.030 16.000 -0.029 CASE 380 11.000 12.000 12.100CASE381294.000 1.000 CASE 381 10.000 8.350 0.010 9.663 4.640 CASE 381 0.000 1.726 1.000 0.151 -0.150 CASE 381 1.726 0.029 16.000 .-0.029 CASE 381 12.000 11.000CASE3823Ol’0OO 11.000 0.000 CASE 382 11.000 8.250 0.010 9.698 ;3.442 CASE 382 0.000 1.862 1.000 0.140 -6.139 CASE 382 1.862 0.027 16.000 -0.027 CASE 382 1.000 10.500CASE38330l’000 11.000 12.000 CASE 383 10.600 8.250 0.010 9.714 3.321 CASE 383 0.000 1.928 1.000 0.135 -0.135 CASE 383 1.928 0.026 16.066 -0.026 CASE 383 311000 11.000 '3.500CASE3840.000 8.000 CASE 384 10.600 8.300 0.010 :9.794 3.107 CASE 384 0.000 2.291 1.000 0.113 -0.113 CASE 384 2.291 0 022 16.000 -0.022 CASE 384 8.000CASE385311.000 11.000 1.000 3.500 CASE 385 10.700 8.300 0.010 9.794 3.107 CASE 385 0.000 2.291 1.000 0.113 -0.113 CASE 385 2.291 0.022 16.000 -0.022 CASE 385 0.000 7.500CASE386329*000 11.000 .6.000 CASE 386 11.800 8.150 0.010 9.810 2.141 CASE 386 0.000 2.371 1.000 0.110 -0.109 CASE 386 2.371 0.021 16.000 -0.021 CASE 386 0.100CASE387329.000 1 1.000 1.000 6;000 CASE 387 11.300 8.150 0.010 10.047 1.252 CASE 387 0.000 3.954 1.000 0.066 -0.066 CASE 387 3.954 0.013 16.000 .-0.013 CASE 387 0.000CASE388104.000 12.000 4.500 8.000Case38810.600 8.250 0.082 9.794 2.778 CASE 388 0.002 2.291 1.000 0.113 -0.111 CASE 388 2.291 0.022 16.000 -0.020 CASE 388 1.000 4.500 8.000CASE389104.000 12.000 CASE 389 10.600 8.300 0.076 9.794 3 107 CASE 389 0.002 2.291 1.000 0.113 -0.111 CASE 389 2.291 0.022 16.000 -0.019 CASE 389 13.500CASE390129’000 12.000 0.000 2.500 CASE 390 9.600 8.100 0.040 9.618 2.945 CASE 390 '0.001 1.567 1.000 0.166 i -0.165 CASE 390 1.567 0.032 ?16.000 -0.031 CASE 390 12.000 11.000CASE391129.000 i.ooo 2.500 CASE 391 10.500 8.200 0.100 9.698 3.079 CASE 391 0.003 1.862 1.000 0.140 -0.137 CASE 391 1.862 0.027 16.000 -0.024 CASE 391 12.000 0600 -v '<13.000CASE392148.000 4.000 CASE 392 9.800 6.700 0.072 9.634 0.116 CASE 392 0.000 1.622 4.809 0.033 -0.033 CASE 392 ..-.,1.622 0.003 39.921 -0.002 CASE 392 CASE 393 148’OQO 12.000 1.0Q0 4,000 11.500 O CM O O 0 10 10 4»o o ”4»00*0 ot-otf>O ”*r-OOOO OOOO OO-^N O«WO O *o83888^88 8585 8S88 8583 8R28 8388 8888 8888 8888 8288 838 inood d r-do id d d d *d o*d d d o d m d d d r-o d d d o d o o ®o o d o o o ®o o o wooCM—I I CM I I CM CM I I CM ”11 CM II ”II ”II ”II ””11 ””T I ”If ””I cm o o o tmo8288588 o o o *o o o otoo oN®o o a c o8^88 8888 85588 tCiOO *O o o *000 o*oo o *r-O o CM (0 O 0*00 00*0 00-00 OOOO O CM CO O 00*0 0*00 0*083888888883883888K*8 8338 8?88 8388 8588 8588 858 dodo dodo dodo cm odd dodo dodo ddoo dood dodo *odo *oo ®6®OOO*OOO*OOOO OOOO OOOO O^OO OOOO OOOO O”OO oooo O CM O O OOOO O O O CM o o o co o o o r-ooom ooo*ooo80S88838388858885888*88 8*88 8*88 8288 8288 8888 8888 8S88 8888 8883 8383 8S83 8383 8*8d”d od”d ”d*-d dd”d ”O”d od”d »^d”d do”d ’-O”d dd”O ”d”d od”O ”d”o dd”O ”d”O od”d ”d”<o od”d ”d” ooo oooc»oooo o o cm o oooo oooo oooo oooo3PP88228g**8888 81888 8888 8PP8 8888d””cm d ””cm o ””cm d o.”cm d d ”cm d d ”cm d d ”cidd*- oooo oooo oooo oooo oooo oooo OO**o O CM CM oooo oooo ooo8858888888P8888882558822832288558822882*882 CM d O ”CM d O ”CM ®O”CM o’o’“CM o’”CM o’””CMO””CMOi””CM O ””CM O ””CM d ” O CMOOoo o o *888 ooooooOCMO ooo 400 001 O O ”o ir>oOCMo ooo 100 031 oooOoCMOCMO O o *O o ”0*0 O O ”O O ”OOO O O CM888 O O CMOO*O CM O OOOOOOOOO O O ”OOOooo ooooooooo o o *oooooo oo^828 OOOooo0*0 o o *888 OOO .900 ”Q OOO(D w-OOOO”ooo ooo oooo OOOO”* o r-ooCM o r-o8 OOOSI OOOCMCM 237 8 0 r-r-o8 251 8 0 251 9 0 4»O OoCM 4»O O8 OOOoCM O 4»OCM o ooo *****wiorn w to o oooor-r-r^r^ooOoOooooooooooooooooooooooooooooooooooooooooo oo oooooooooooo ooooOOOOoooo ooooooo”””””cm cm cm cm cm o o o o o *****io io io io io ®o^^^^r©o ©OO O OOO OO O O O O ”” I HOO 3SU0 *©©o ©©©00 in p >o»oo »© :P o ©©.<o ©©p o b©©O O©p © ©ooo ©o p obo ©©oo®3 -O P ©o *o ©—©©©,-O’-©o p -o o cm ®cm®*cm »—CM ®CM ®©»bi cmN®bl CM ©©O O ©'©©§88 8’©©©CM CM *-©®—CM §883 ©©r © 8388 8383 8883 8888 8883 83 OP©NPOb HpOO bob®b r-o ©o ©© ©op©©bo© ©®CM CM ©® ©bib©pwob ;©o ©*-©©r*©©©©cmo©t i .ii ..I a .i ll 'll .it CM — ©oo©p b ©© CM Q O *-W ©©©CM Q O CM CM©©©^©O ©’-©©©“© 888'^©b /©/. ©©©:oo©O’-© CM©.©cm” ©©©oooO©Q *do o®-CM bob ©o ©o ©, ooo 8 8080dd^o \~d~d oo©ooo©cm ©bid©r-—CM CM®-”-CM®——CM® o©©ebcM bo88888888 bo ©©oo ©poo cM ©o o cm©o©©©oo cM©b©©bid©ddbo bcidd p©b©i i J । i i —i i —i i '—.i i —i i । n ,:i .i i i i i 6 ©CM§8§ pod CM ” o ©©?'©©o h*.©o ©r-§888 ©©—.888 . © o o © CM 888 .8S8 §§8 *-.b ©’’o *-©’’p *d ©o ©8^8’m*d ©o**CM ©©O888 .8Z° ©po©©o©©©oo© ui ui ui Uiuiuiuiuiujuiuj ujujuiujujujujujujuiuiujujuiuiujujiijujui uj uj ui ui uj uj ui ui Ui uiuj ui ui ui ui ui ui ui Ui ui ui ui ui iu ui ui ui ui ui ui ui iii ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui lii ui ui ui ui ui ui$2 S2 &S2 W ©©©©©©©©©©S ®g>©©©©©W ©©©©©©©©©(O©®©©®©©©©©©©©©©©©®®©©®c tc c c cic c cc ci<i c c c cn c c cc c cc c c c c cic c c cccic c cc c c io.(z c r c c c c &<e cic tit c £c c ci c S a:t c<icc t cc d11ccc t icc tic t cOOOOOOOOPOQOOPOOOOOOOOOOOOOOOOOP&OOOUOOQO&OOOOOOOOOOOQ&OOUOOO&OO ob»»o©©p b ©©©b©82ZZ RaJGE RKXZ aS®®.o ©v v -onntb .©© p bo /*.-.'O’-.--o o©©«©©©©8 es 5 -825«bidbibi oidbibi »©©©.©,©’©©©O O bb O O b-r-S §1888 8S88 §288 8888 2 2fiZ2 22-2 2222 2S&2 29!Q2 otoo'pboo o®b©b»r*b boob ob©©bcMbio ©cm cm o o o cm o ©©cm ©?©b ©©©©cm ©8 8838 8 8 8 8 832 8 83 2 8 8 S £8 83 28 8 S 28 8828 8 R:=8 8K-8 8 8 2 8 8328 8 3 28 8328 8 g S 8 8 888 882 8 888 8-.»»<.»*»-'a a a a a .-a 'a ''a ’. .a a -a -.a 'a -a -a a a a.a a "'a a-a a .'a .a a a '-.a 'a 1 a .a a -a Ob’-O b ©-©or-(Mb*o r-cm r-o©w»o©o©o©8?es 822g 8383 8383 8825 8883 §? ©ON o o bor888888828 oo©©bo©©oo’-’-oo®®oo®»805?8888 8 88 8 8 8 2 2 §e;; bidbibi cm d bi bi cm d.<M cm *cm d bi cm rid bi bi ooo o OOP*o ©cm cm o ©©$O«t P ©CM CM ©.©©©© ©©©©©©©*©©.©*© ooo-ooor ©obo obo©ooo©oooM-obo©8888 8888 888S 888 S 8S8S 8388 838S ©o *©©^o ©®r-o ©®.—©cm©©o^Po ;©or-©©pr-®bcMr-b -O’-!8 8888 8888 §&28 §828 832g g?£8 §SEg g25g gg: CASE 430 0.000 2.291 1.000 6;113 -0.113 ; CASE 430 2.291 0.022 16.000 -0.021 CASE 430 CASE 431 129.000 13.000 1.000 io ooo 7.200 CASE 431 11.500 8.450 0.010:9.820 4095 CASE 431 0.000 2.421 1.000 0.107 -0/107 CASE 431 2.421 0.021 16.000 -0.020 CASE 431 CASE 432 148.000 13 000 0.000 4.000 17.500 CASE 432 10.200 8.200 0.126 9.490 4.878 . CASE 432 01006 1.189 i.boo 0;219 <-0.213 CASE 432 1.189 0.042 16.000 \-0.036 CASE 432 * A - CASE 433 148.000 13.000 1.000 4.000 h 10.200 CASE 433 11.200 8.650 0.042 9.724 7.784 CASE 433 0.003 1.968 1000 0.132 -0.129 CASE .433 A '1.968 -:■0.025 16.000 -0.022 CASE 433 1 CASE 434 .160.000 13.000 0.000 6.000 17.000 CASE 434 10.600 8.750 01010 9.506 14 922 CASE 434 0 001 1.230 1.000 0.211 -0.210 CASE 434 1.230 0.041 16.000 -6.039 CASE 434 ..A ’ CASE 435 160.000 13.000 1.000 /6.000 16.300 CASE 435 10.800 8.750 0.010 9.528 14.279 CASE 435 0.601 \1.291 1.000 0.201 HJ.200 CASE 435 1-291 0 039 16.000 -0.037 CASE 435 CASE 436 176.000 13.000 0.000 6.500 21.006 CASE 436 8.800 8.600 o.oio 9.378 14.290 CASE 436 6.061 0.933 11000 0.279 —0.277 CASE 436 '-1.000 0.050 16.000 -0.049 CASE /436 .*-/ CASE 437 176.000 13.000 1.006 6.500 18.500 CASE 437 9 450 8.650 0.010 9.458 13.465 CASE 437 0.001 1.109 1.000 0.234 -0.233 CASE 437 .-1.109 0.045 16.000 -6.044 CASE 437 -A .- CASE 438 <195.000 13.000 0.000 ^4 000 26.000 CASE 433 9.400 8.550 o Oto 9.218 17.681 CASE 433 0.002 :0.708 1.000 0.367 -0.365 CASE 438 1.000 0.050 16.000 ;-0 048 CASE 438 CASE 439 195.000 13.000 1.000 4.000 ia.ooo CASE 439 10.300 8.600 6.010 9.314 16.192 CASE 439 0.002 6.813 1.000 6.320 -0.318 CASE 439 1.000 0.050 16.000 -O.O48 CASE 439 CASE 440 209.000 13.000 .0.000 4.500 /24.500 CASE 440 8.500 8.450 0.020 9.266 13.251 CASE 440 6.003 0.733 1.000 0.355 -0.352 CASE 440 1.000 0.050 16.000 -0.047 CASE 440 CASE 441 209.000 13.000 0.000 4.500 19.500 CASE 441 7;600 8.250 0.070 9.426 6.251 CASE 441 0,004 1.035 1.000 0.»1 -0.247 CASE 441 1.035 6.048 16.000 -0.044 CASE 441 .-.- CASE 442 223.000 13.000 0.000 5.000 25.000 CASE 442 9.000 8.600 0 066 9.250 18.292 CASE 442 0.012 0.708 1.000 0.367 r0.355 CASE 442 1.000 0.050 16 000 -0.038 CASE 442 ‘-CASE 443 223.000 13.000 1.000 5 boo 22.000 CASE 443 7.500 6;200 0.069 9.346 CASE 443 0.005 6.871 1.000 0.299 -6.294 CASE 443 1.000 0.050 16,000 CASE 443 a'''.. CASE 44*237.000 13 000 0.000 7.000 19.500 CASE 444 7.900 8.300 o.oio 9.426 6.961 CASE 444 6.60i 1.035 1.000 6.251 -0.250 CASE 444 1.035 0,048 16.000 ,-0.048 CASE 444 'a CASE 445 237.000 13.000 1.000 71000 13.000 CASE 445 7.400 8.150 0.010 9.634 3.177 CASE 445 0.000 1.622 1.000 0.160 -0 160 CASE 445 A 1.622 0.031 16.000 -0.031 CASE 445 CASE 446 251.000 13.000 0.000 8.000 181500 CASE 446 8.100 8.100 0.010 9.458 4.201 CASE 446 0 000 1;109 1.000 0.234 ^.234 CASE 446 A 1.109 0.045 16.000 -0.045 CASE 446 ., CASE 447 251.000 /13.000 1-000 8.000 18 000 CASE 447 8.300 8.150 0.025 9.474 4.528 CASE 447 0.001 1.148 kdoo 0.226 -01225 CASE 447 A 1.148 0.044 16.000 -0.042 . CASE 447 CASE 448 258.000 13.000 0.000 5.500 1 18.800 CASE 440 8.600 8 600 0.010 9.448 12.417 CASE 448 0.001 1.086 1.000 0.239 -0.238 CASE 448 1.086 0.046 16.000 -0.045 CASE 448 'A -r CASE 449 258000 13.000 1.000 5.500 18.8do - 0W-O: 838 888ooo 888 888 288 MOO MM CO W M MOW MMCOWMMCOW COW --awcow—co w co co o o co co o o OOOO MMOO o oo o o —o oO /doooo—o o ooo -OOO M O O O M o o O co o o;o M OO O odo p POOP OOP VI 8=28 8=28 8 =38 86kk 86^OOOO OOOO O -4 ®O OMMO OMMO O VI A O O-WO oAawOO*W O O VI W O M “4P O W —VI OM—O O 0^0 o M —CO o vi A —o CO p M O O OP O M® CO CO o ooooo A A M co Aom<o oomp A O WO OOOM O O 8128OOoo 888MOO 8828 8828 ,w o O o W o O O .2.*oboo—o W W A QOOVIoppoo ooooooMOO 6 —o —o —o o 0 —0—o ® 888poo M—o;OOA’888* aoovi OOPP O OP -4 $004 ooo o -o Mco.op o8^ftooMOO OOP -4 8 =28OOOO ——cobooco®oOOo—-UI QCOCOoooooo. m m m ni m rn m m in m m m m m m m m m m m m nvm m m m m m m mm m m m m m m m m m m mm mmmmmmmmmmm mm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm.m MoocoVI —-—co w MM WOWWVIo o —oo 882 8COooo o o o o ;oo o o o 6 o o 0 —0 282OOO 2s38OVIcoo ««ft 8OOOO o —o —o —o o 8828 8888WOQooooo ——cow ——co w 8RJ88 8388 888 888 888oooooo-oo —co w VI VI A Ooooo co w ——co w O O 2 0 0 -4 0 —0 o 2888MOOO w 0-0888'ooo MMCOA mm co a 3888 8888 -8>-O W W AOMMOO — —CO:W VI VI w ooooo 8§2§—a o o M M CO W^0 o —o —< 8828 i—OOP o 12 888VIoo 8808 8888—O'JO $$§$S S J S o S S S S S o S S S S g S S S S S S S S S S S S S S S S S S S vi vi S S S vi vi S S vi ft S ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft aa a a-4-4-4 4:4 0 P O O P VI VI VI VI VI ,A A A A AWW W W W M M M M M — ————OOO OOO p O OP CO CO CO CO CO -4 -4-4 -4 -4OPOOOVIVIVIPPAAAAAWWWWWMMMMM ——— ——000000000 M M M M .CO -4 -4 .P-OOO O«M OCOM O CO VI 8888 8828 8888 8828 8888OOOO“ 8-8 o —— II —II —II —II —1 I .—I I —I I —__.„00 4 0 OOOP 0044 0004 0004 0004 OOM 8 8oS8 83X8 8 =38 8688 86 88 8688 8x63 8x68 8388 8388 8383 SisW 2228 8288 2288 2288 28 =~~~*'—---—“‘coo oo —o 4yioo -a4o oo4o o4wo o4ao via4 2828 2§8§2888MOOO—OOp MO O O 8328 8328 8388 8328 8238 8288 8238 8238 82=OOOO OOCOO OPPO 00 —0 OOOO p —O O O O p O OP o o o o co 3 3 o 8 S —o 8 w w vi 8 w w o 8 8 8 o 8——oo wwpo co co o o — OOPM OOpM Popo OOOO OOOO OOPO J 77'CASE 468 129.000 14.000 6,000 6.000 -■9,;800:- CASE 468 10.900-8.200 0126 9.736 2.826 CASE 468 0.003 2;023 1.000 0.129 -0.125 CASE 468 <2.023 00257 16.000 :-0.021 CASE 468 . CASE 469 129,000 14 000 1.000 6.000 9.200  CASE 469 11.400 8.300 0.160 .9;756 '■ .3,384 CASE 469 0.005 2.109 r.ooo 0.123 .-0.118 V:r':--CASE 469 7*2.109 0.024 16.000 —6:018 CASE 469 CASE 470 .77 148.000 ?14.000 0.000 5.500 14.500 CASE 470 10.200 7 8.500 0.1607 9.586 '■7.582 CASE 470 6.012 1,462 1.000 0:178 /-b/166-</7--‘'7^ CASE 470 1.462 0.034 16.000 -0.^2 ; CASE 470 :-..-,- CASE 471 148.000 14.000 1.000 5.500 10,500 ‘7-;- CASE 471 11.300 8,550 0.179 9.714 6:415 -.■•.A-;, ' CASE 471 0.011 :1.928 1.000 0.135 -6.123 CASE 471 1.928 0.026 16.000 -0.014 J 'CASE 471.--.. CASE 472 160.000 14 000 0.000 4.000 17.500 CASE 472 10.600 8.350 0,090 9.490 6.755 f '<7- CASE 472 0.006 1.189 1.000 0.219 -0.213 < CASE 472 1,189 0.042 16:000 -0,036 CASE 472 '-■,V  CASE 478 160.000 14.000 7 1.000 4:000 /17.500 '-/J"- CASE 473 10.400 8.500 0.010 9.490 -'9.283 'J CASE 473 0.001 1.189 1.000 0.219 -0.218 CASE 473 ...1.189 0.042 16.000 -0.041 --/'C . CASE 473 7  CASE 474.-'/-176.000 14 000 0.000 4.500 21,500 L /7 7--7'^ CASE 474 8.750 8.600 0.010 9.362 14.747 ' CASE 474 0.001 0.902 1.000 0.288 --0.287-CASE 474 1.000 0.050 16.000 >0.049 V ’r "CASE 474 -v',-'7 >7‘;*'*-/<’,‘-CASE 475 176.000 14.000 1 000 4.500 19.560 CASE 475 9,750 8.650 o.dib 9.426 14.346 ;< CASE 475 0.001 1.035 1.060 0.251 -0.250 CASE 475 <1.035 0.048 16.000 7-0.647 -/7 CASE 475 -i-'-- CASE 476 195.000 14 000 0,000 4.000 26.000 '7''77- CASE 476 9.200 8.600 6.010 9.218 '■19.419 ' CASE 476 0.002 0.708 1.000 0.367 -0.365 CASE 476 *'’;.1,000 0.050 16.000 7-0,048-'-■>■7, CASE 476 //■..'.: CASE 477 195.000 I4:o6d 1.000 4.000 24.200 CASE 477 8.900 8.450 0.010 9.276 12.999 7 CASE 477 0 001 0 748 >1.000 6:348 -0.346 777'7 -;,'''<7-—y'',CASE 477 1.000 0.050 16.000 7 -0/0497;7 ?-7 CASE 477 .>. CASE 478 209.000 14.000 0.000 4.000 25,000 CASE 478 8.200 8.466 0.040 9.250 12.377 CASE 478 0.005 0.708 1.000 0.367 -0.362 CASE 478 -7 1.000 0.050 16.000 -.-0.045 ,777;7;77 CASE 478 7 ;.. CASE 479 209;000 14.000 1.000 4.000 20.500 CASE 479 7.800 8.300 0.070 ’9.394 7.453 '.;77:-7: CASE 479 0.005 0.966 1.000 0,269 -0.264 ---7-- CASE 479 *«i.doo 0.050 16.000 -0.045 :.7 -. ‘ CASE 479 CASE 480 .223.000 14 000 0.000 3.000 25.000 '■-.7;?; CASE 480 9.400 8:600 0/020 9.250 -18.292 .'7' CASE 480 0.004 0.708 1.000 0.367 -0.364 CASE 480 />1.000 0,050 16.000 -0,046 CASE 480 ’’*7 ':-'*..7 .''7,, CASE >481 223.000 14 doo 1.000 3.000 23.00b 777.77.- J’-‘CASE 481 7.100 8.550 0.025 9.314 14.689 7 7 :/<-7 7 77--"7;7 CASE 481 0,004 0.813 r.ooo 0/320 -0.316 ..'7 ' CASE 481 1000 0.050 ;16.000 --0.046 .,7 7;7777 ,77'-.-7’„\.-CASE 481 ..'- CASE 482 237 000 14 000 6.000 18,506 77777'77J 7777777 '7,7 -7-;: CASE 482 7.600 8.100 0.012 9 458 :4.201 77'7'7'-77. -.CASE 482 0.001 1.109 1.000 0.234 -0,234 ..-7/-'777 CASE 482 >A 1.109 0;045 16.000 -0.045 7 if-;///7/7 _7 --CASE 482 .'-.- CASE 483 237.000 14.000 1.000 “6.000 :15.000 7 7 7'.<;7 " CASE 483 7.300 8;150 6.012 9.570 3.663 .7'7 -//7-. CASE 483 0.000 1.413 1.000 0.184 -0 184 " CASE 483 «.1-413 0,035 16.000 -0.035 CASE 483 -Ji. CASE 484 251 000 14.000 0.000 7.000 18.506 7 7'7' CASE 484 8.400 8.300 0.036 9.458 6.499 CASE 484 ?0.002 7 1,109 1.000 0.234 CASE 484 .1.109 0.045 16.000 .-0.043 777/77?7.7777 ?<77 '<7 CASE 484  >'/CASE 485 251000 14 doo 1.000 7.000 18 000 ^777'. CASE 485 .8.700 8.400 0.110'-9.474 '7 7.777 ' CASE 485 0.009 1.148 1.000 0.226 -0.218 7;'>7 CASE 485 «>'7 1.148 0,044 16,000 ;-0.035 <77'. CASE 485 ..*'< CASE 486 258.000 14.000 0^000 3.500 19.000 7 CASE 486 9 .100 8.550 0.010 9.442 11.366 .7",< CASE -486 ^0.001 1.072 ;1.000 0 243 -0.242 77?-:'7„/:■77. CASE 486 1.072 0.047 16.000 -0.046 /!7/7^7''7r-—;7-/77 7.. o —®§100 0M—M8588 ©©o o©©©O 00*0 ©000 o o o o boboO0oo©0 o ©ON o;8858 8?m8 8*m8 8 8 m 8 8 *S 8 8 ©—§8 S -8 8® M0O©*0O©NO>O ©©0 o0?O'©©00 © o b ’o o o 7 Oooooooo *»M M O O M boo 1 O O O OON oo oOOMOOMOO0OO0 *0.0 0 0 —£M MM M M 0 0 0 0 0 *****©©© =O O 00O©®0 0 o ooooOMO O O *o o r o O 0 0O©O oo000 O O 00OO000000oo®© ©M M ©O> ,M o 0 o©M '.*o oo*- o 0 o0M 0M O M MO88=8 O OOM ©O O 0800*Q 0 O 0—O O 0*00 O ©0 oQ00O© ©—O oo —o O Qo©o 000 oo-oo —888 888 888 ©v>—~; >0o6 >M 6 ©*00 ©*00 ©>—m obinb0.0 ©g ©0 ©g g M >g g f t g *©MM *©MM ©O M88o M ©6ft ooo®8*88—6 —6 p ©—o o o 0 08000©— o -© ui ui ui ui ui uj ui ui uj ui ui ui ui ui ui ui ui ui .ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui in W ui iij ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui Ui ui ui ui ui®©$2 © © ©©$2 <{>$2 $2 ©®®®52 m 52 52 S2 ©52 52 52 52 52 52 52 &52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 $2 52 52 52 52 52 52 52 52 52 52 $2 52 52 52 52 ©©© ©©©©© ©©©52 ©52 ^©52 © ©©© ©^cccc c c c c c c c c t c c cc c c c ci <c <e cc <E c c <E <ec i cc c ccc c c c cccc c <e c ccc cc c <E c c<E ccccazccco:a.ICC <E <E <E C <E C <E <E (E c a:£C £0.CE £<E C C C C <E 00O©p0O©©0Q© O ”o O o oobb boo*oob*-bob©8588 8588 8888 8888oooto8588 10 ®o ©M ®®otoM o o toOOQOOO’*6 60..’-.-?‘M. OO0 0 ©O’-8 88 8 8^510®M M id ®CM ObOM ObOM boo*8883 8888 8283 ©©b *\b o o m 0 0 0 0 0 0 0 0 ©©©©-©©©0 o ®©m b ®o8888888885888588858882858888888 O ©0 0©©O oO000 ©lob©binbin ©0*m ©®mo ©*’-0 oohN O’-©©om>©8528 8828 8828 8F:=8 8828 88 =8 8528 8285m666m6660066®m©6 ©mo©®m6o >m66 6m6611r11 11 1 1 1 T 1 1 00 ©888 0 ©’ 000oooooo6®6 * ©M 000 *o >>o »in 0 b >0 ®8 583 8553 8858 8828 ®m o p >>6 6 >»66 >©66 ©0 o ©0 ©©©bp©©i/>0 o o tn 0 o ©*0 o ©*0o b 0 0 6 ©0 0 6 6 ©06© ©0 00§0> >,*©© *®~ o©**00000Q—T-0 Q00oioin in o ©** .888 888 ’6 ’’68~8” ©M©O o>0©00©00©©0 0*0©©MM©©0>O O©©O ©Mb©882 g 8228 8 8 2 8 8 it 2 8 88=8 8 2 8 8 P =8 8 828 8 82 8 OOO©©O 0 0o©00 ;o ©0 ®:©0 M M ©.*“*- 0 —0 .*1M-O’ oo©©oo**§O© ©Q O 00M**P M © © *0MM *0MM O O © ©O O ——O O 00 O O 0 08©©©Q ©0 0 O ©00 Q ©——MOO p M M M .O.M ——,©M M M *0 M M CASE 599 1.109 0.045 16.000 -0.042 CASE 599 CASE 600 258.000 17.000 0.000 4.500 18 .800 CASE 600 8.600 8.450 0.220 9.448 9.121 CASE 600 0.020 1.086 1.000 0.239 -0.219 CASE 600 1.086 0.046 16.000 -0.026 CASE 600 CASE 601 258*000 17.000 1.000 4.500 18.800 CASE 601 8.700 8.550 0.060 9.448 11.218 CASE 601 0.007 1.086 1.000 0.239 -0.233 CASE 601 1.086 0.046 16.000 -0.039 CASE 601 17.000 17.500CASE602265.000 0.000 5.500 CASE 602 8 .600 8.400 0.170 9.490 7.517 CASE 602 0.013 1.189 1.000 0.219 -0.206 CASE 602 1.189 0.042 16.000 -0.029 CASE 602 CASE 603 265.000 17.000 1.000 5.500 17.500 CASE 603 8.600 8.450 0.150 9.490 8.358 CASE 603 0.013 1.189 1 .000 0.219 -0.206 CASE 603 1.189 0.042 16.000 -0.030 CASE 603 o bod 3.500CASE604272*000 17.000 17.500 CASE 604 8.400 8.350 0.130 9.490 6.755 CASE 604 0 009 1.189 1.000 0.219 -0.210 CASE 604 1.189 0.042 16.000 -0.033 CASE 604 1 .000 17.500CASE605272.000 17.000 3.500 CASE 605 8.200 8.400 0.080 9.490 7.517 CASE 605 0.006 1.189 1.000 0.219 -0.213 CASE 605 1.189 0.042 16.000 -0.036 CASE 605 17.000CASE606280.000 0.000 5.000 16.100 CASE 606 8.900 8.350 0.490 9.535 6.134 CASE 606 0.030 1.309 1.000 0.199 -0.169 CASE 606 1.309 0.038 16.000 —0.008 CASE 606 16.000CASE607280.000 17.000 1.000 5.000 CASE 607 9.000 8.350 0.780 9.538 6.091 CASE 607 0.048 1.318 1.000 0.197 -0.150 CASE 607 1.318 0.038 16.000 0.010 CASE 607 1.000 5.000 13.000CASE608287:000 17.000 o.odo CASE 608 10.000 8.500 0.270 9.634 6.843 CASE 608 0.018 1 .622 1.000 0.160 -0.142 CASE 608 1.622 0.031 16.000 -0.012 CASE 608 'l.OOO 13.000CASE609287*000 17.000 5.000 CASE 609 9.900 8.500 0.190 9.634 6.843 CASE 609 0.013 1.622 1.000 0.160 -0.147 CASE 609 1.622 0.031 16.000 -0.018 CASE 609 7.000 12.500CASE610294.000 17.000 0.000 CASE 610 10.000 8.000 0.820 9.650 2.190 CASE 610 0.018 1.679 1.000 0.155 -0.137 CASE 610 1.679 0.030 16.000 —0.012 CASE 610 7.000 12.000CASE611294*000 17.000 1.000 CASE 611 9.900 8.200 0.290 9.666 3.307 CASE 611 0.010 1.738 1.000 0.150 -0.140 CASE 611 1.738 0.029 16.000 -0.019 CASE 611 10.500CASE612301.000 17.000 0.000 9.000 CASE 612 11.000 8.350 0.010 9.714 4.146 CASE 612 0.000 1.928 1 .000 0.135 -0.134 CASE 612 1.928 0.026 16.000 -0.026 CASE 612 10.500CASE613301*000 17.000 1.000 9.000 CASE 613 10.800 8.250 0.020 9.714 3.321 CASE 613 0.001 h928 1.000 0.135 -0.134 CASE 613 1.928 0.026 16.000 -0.025 CASE 613 o.oodCASE614329.000 17.000 7.500 6.800 CASE 614 11.400 8.150 0.030 9.832 2.035 CASE 614 0.001 2.489 1.000 0.104 -0.104 CASE 614 2.489 0.020 16.000 -0.019 CASE 614 CASE 615 329.000 17.000 1.000 7.500 5.000 CASE 615 11.400 8.150 0.170 9.890 1.787 CASE 615 0.003 2.818 1.000 0.092 -0.089 CASE 615 2.818 0.018 16.000 -0.015 CASE 615 O O to 0o»oo>o®oc>ob -©-CM 00 Q Q ??82??©moocm o b o o o ©*ob to bo to o o o obdo>8383 §388 8 5 83 8388 838 8 Q o to Q —b tooooooooo—o bo—©o o © O O O O O O to to o b ©o b o b oooo /oooooooo©0.0 Ooototoo CM CM Q O 0 0'to O O O F-CM CM 8888 8822 8888 8888 8988 8888 8888 8858 8822 82bbCMCMF-»CM CM W 0 ON©o N ©o - bb cm b o CM ©o b ?§§33 >F-CMCM too ooo~cCM— OO.CMOOOOtoO '6 b-O — bo o o o ob —©OtoCM ©♦CM888 .b o o to to b o b oo oO©obodCM— 0Oob 0bbto No Oto o o 0 0 o o o ©§588—©—© too©to toboto boob to b ©.to boob b 0 ©8 OO0888 ’—0 ©to .CM' §558 N 0 d o ©OCMCMO ©CM ©O to©8 8m 8888 O OO 0,O to O to85858888 O O Q O O O .Oto O O 0 Obob 'bob:to—n b o o to o bo8885888 o 6 rd —b — OO0O oooo Id Id id id id id Id uiuJldldldidldldldldldldldldldldldldlilldldUJldUiUJld id id id UI id id id Id Id Id Id id Id Id Id id Id id Id Id id id id id id id Id id Id Id Id id id Id id Id Id id id id id id id idldididldldldldldldldldldldldldldld2222 2 2 2 2 2 222 2 22222 2 22222222222222 2 2 2222 2 222222222222 2 222 w 0 <2000000000000000000000000 00 00 0000000<E(E(ECCCC<EGZ<E<ECC<E<E<E<E{C<E<EG:<EG-G-<E<E<C(E<EGC<E<I.<C<E<E<EGZCOCaZOCGZ<E<ECE<E<E<E<E<E<E<ECGX £C CiC C CC t C £Cff C C C C ff ff (T (t C (T (T tT tT (T <r (T (E (E CIC tI(Z t C Ci/w \/\/x /\n rx /\>n m n m /s /\/\rs /1 n m n /1 m /\m )v A r:r:/7 7;m /\m m n m m rt r:n rr rr rr rr rr r:rr rr “rr “r ~r:r:r rr r:!*:rt r:r<r: OOOOOO00or-CM CM Oto0»o o o m-o O to —O O O CMOCM0,0 0 —0 O 0N0 00088 to oi q to 0 0 to ♦bo to ♦o b to ♦bob bb bb -b b bb 0 0 cm to§00*-O O O tor b b 0 o cm o o o o o 0 0 0 0 O CM 0-0 Oto o o o *8888 8088 8888 838?—o—b bb—o —o—o 66—c 000 o o CMotocmoooobo<0 Qboogb6 =^.^2;XX.XI x.2L =:x »=b’-rto obtoto OOOW OO0O OCM0CM O-N 0 C.r,CJ 08?R3 8858 8388 8838 8883 8583 8838 8853 §883 8RS8 8888«».'**««««**A '*'A ..A A A A*...-A A,AA A .A«* O O 0 o O —OOQ QOOOOO0O*.’to —6 ’bob to — o o o bo8888? boo to boob oooo O — ——.’r —CM CM CM CM CM 0 00 0 0 to’to to to to to to .to to toT”T-N F-C-0 ®0 0 0 O O O O O O O O O O ———— —CM CM CM CM CM 0 0 0 0 0 to to to to to to to to to to N F-Is-F-N 0 0 0 0 0 O O O0000000.0 0 0 0.0 00 0 0 00 0 00.0000 00 0 00 0000 00.0000000 0 00OOOOOO-OOoboooo oooo oooo oooooooooo oooo oOoooooo OOOOto to to.to to tototototototototototototototototototototototototototototototototototototototototototototototototototototototototototototototototototototototototototototototototototototototototo -__-o to —o b cm 0 o o 0 o ©♦iso c::r.8 8858 8858 8888 8988 8888 883 0 0'0 0 O O O O O CM o o8888 O to 0 7“O 0 O —o O to O CM CM 088S&8P=5 8888 8*”8 8558o’cm<j>o b0jj>y bto^>^>b*^^ 000 r-No Nr-S :8 8 QCM0O OtotoQ ©♦OO OCM0O ©♦©©OO0©©©♦©©©♦O ©©♦^8 8&§8 8K^8 8S88 8¥R»A .A A .A '*A .A - -/'*.*A 'A J1 A .A <A A A ''A A-A -A -.A A a B A 2 2tl 2 2 *©©©o cm o o —8 <m 8 008 888 888 8to8 p8558 5 885855883*8 8S*8 88*8 88*8®*6 6 6 o o’o o *ID o o id o 6 P CM O O P CM b o P CM o o.®o ®b p CM P O b®p o bioppor-P oo MOOb 6 oo®o b o®.ob o®o b 6 cmbwojoidp*poop oooo o o o co o *■o ®owoo oooooppo O'-P p p ’p O pPo pp P ppoob p b p p o p co co o o b b o o *O P »®O O CM CM O O *b POO®p p ® ®O $®®g b ®®8 $ID ID ,8 ®$$n O © b ®©®©®b ®©®”b »r-ID ®'©»—-b »<0 ®CM CM PO ®O P CM888 CM ®P CM ®b t PP0» CM CM ® Al V/V/V/A7 V/H H H H H WZ U/W/U 9 W Z HZ HZ HZ HZ V I I I I I’W-W W W VZ V’V’V’V V V .W V W V ~“V7V7 V?H W7 U/W7 U?Ui HZ V W V UZ P*I I I I W W W W W V’V’V’V*V’V V V V©©© © ©©b ©;©<D ID O ©b ©©<D O ©©<D ©©<D b b ©©ID ©©b ©ID ©ID iD O ©©P-P-r*P-r*l>P-P-P-T*P P P-PP PP P P P P P P P P P b P Is-P hb P P PP P P >P Is-P PP PP ®®®®ID IO ID ID IO ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID Ip ID ID ID ID ID ID ID ID ID ip ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID IQ ID ID 10 10 ID ID ID ID ID ID ID ID ,ID ID ID ID ID ID ID 10 b ID ID b b b ID ID ID ID OP®b P P.P P IDOOOPIDP O ®O ®O ®PP ®CM PCM p b o®CM b ®r-P8R28 O P P Poo®o o o ®o O QO®o;828'6 p o®CM oo®®oo®® 8S8 X ® o o ®8 0o®o, ’’r>oi 6 o o to0'0 0oiop;*®®p io ,CM - ^O o CM ID P O“I I .888’p'^p '® ip p p b b p b b io b b b p CM CM pSies8 b P O b Ul UJ UI UJ UJ LU 111 id Id UJ UI LU UI UI Ul UII UJ 111 UI UI UI UI 111 UI LlI 111 Id UI Id Ul Ul Id U1UI UI Id UI UI UI Id Id Id UI Id UJ Id UI til UI Id Id UI Id id UI UI Id lil id Ld UI Id UI Id Id UI Id UJ UI UI UI Id Id UI UI til lil UI 111 Ui UI Ul Id UI UI Id UI UI UI UI UI Id Id UI222222222222222222222£2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <*>2 2 2 2 <*>2 ®® ®®®®®®®®®®2 ®®®®®cn «www w ww www «522cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc P O’"P P Ph b8K§8< b ®* ;P P P b P O P b PP O CM P CM ®®b*®»“ P P 0.0PO®®O ID P P5®<- 8$; b ®’ >co ®o.IDCM PPP®8888 p p —b p®®p8SS8? PPbb . 8888—'b --b b ®p b8^8 ®io’b b bb b b r-b b CMooppoQ.POPPOOOOPpm-o o b b ®8S8Sdob O CO CM CM id ®*CM CM P -»®P ®p p p ®p p58*5 8858 8S58PIDbbObM'^PP®®8888^b-’r-’b p !*bi pp id *p p b p p p8?5 8 ®p p o P b p8858 855g 8855ri5^><j>bNPb poo*-op p p ppp io ppp®8888 8588 8888 8388 88S8 88*5 §222 §S*5OPPPotoOM-®®P ID ID wpp©®P,bb oooo o>ppb ®p o b O ID P CM .O^OCM P PP CM P P O *-o *■p s o r-o *o o o p :o o p p p b p b r"b O ®CM CM i£>®CM CM ;b-T-CMCM P O bb b CM b;8S28 8828 o «o®o cm *~b r-io ®O ”®'O CM ®*Q r-®®CM CMP ®—CM P \to IO CM P PO*-OO®OOP O O oOOPOOP'ID ®6 ’’io ®doo-CM CM P P 10 ID P PPP --§8»!?§25?88?? OPPO O®PP OOOO ooooS*-®o o *®O QO’-O OO’-Q*-CMO IO *■CM O O^-CMO O *■(M O O O ID O Ooo6oooXTOPCM o id b o b b bb oo*-o888S82888885 F0 8 O CM CM b b CM CM b.8$*8 8$*8 ®P bb b P b b o*-iDb btocMO oobb b ID P b b CM CMb bCMCMb p*-O.b OONO 6 *CM o882888288828832888288PE8 O 0»© ©ooo©ooo b ©oo©oo oNNJIN O ©O O 00)00 Ot^b ONOO O©©O o©oo8KS8S?3§8388 §858 8888 8838 ON NO O ©*O O »to§§-§§¥3§§¥3§ *b ©b o —o*o b p oooo?o o o b ooooooioioOO©©OO©O oooo o ooo o o ©b«38 8 Eg 8 8888 OONN OO NN '■©©—©ooroop©©b—©©o N N o o ©»—' op ©©o o o o ©.—<©©— ooo 888 ©NN 5 5 55 555 555 5555 555555 555 555555 55 5558388 8383 8888 8 8888 BBS 8 88 B BBS BBS 8888 8 B 8 B 8 8 88 B BBS BBS BBS 8888888 8 ©b o oN—I I 8 oooop©ONO '6 6 o' —o o oNT-I I O OQOOO'6 66 ’ © OONooooo10ooo ooo©©bob88888588 oo©©80 0 0r-©o6or-6 ©o or-o r-o p o666 8 §R N ©©—— o o —o o oo 6t ©’666 '’66 6 ' n —i t 0*00 O —ON858888836q6666—6 8888 888^^8888 oooo oooo85888588OOObOIOON©O O O6666 OONOIOoooo©6 6 88^86666 obbioo—c*>*©NN O666 ?85 no 6 6 n 6 6 o o *©©O0—0‘6 o 6 ’ 8 oooo oo b o88888888 —10 ©oN—I I -ON N 86© b o >o o t o o o o o b88888«S8 8?n8 b;b bb b po©,o o © .bob ©bo ob88228892666-6 ©*■*- o O Q©b © '6610N ©bO «©O33 OON OOt ,§§§§2§ 666 ’666©o ”N o o bo8888 O ON838 o©r-©8383 833866666666 .i i .,■*i O O r-888 ,66 6 §oo©o‘666ioN ©O ob O O O f O 0 O OO©ON Q®ON ObO©OOOO OOOO OOOO666666666666 b o b *";©o o -b ©©o ©o b b8©88 8 58 8 8588 8588 ©»-t-©©O’-O ©N O bO O Ob bb OCh^©8 S S S 88 2 8 88 2 g §8 38 8 S3 3 8333oooor-o»©b b o o ©©o ©io o ©o io85888883§883 O ©~©ON8¥8 ;888666’'6 6 6r--o ©©—o o ©-©8 ©n 8 88 n 86666.6 6 6 © ©o io ©o ©—©©——©8283 8nS3 8888 ooo810o©o b ©0 o o o o o o ©b t-8858 8822 §255 Sb ©.©r-b o ©r-o o © o o®©§10 0©©o o6666 b hto o©©©©b »©o ©©*-o -r ©8888 8583 8808 8&n8 8b—8 UI 111 UJ UJ UI W lilUUJlUUlUlUJUJLUUIlliUJUJUIUIUIUJUlUJUJUIUJIlJUJUJUIUJUlIllUJUIUlUIUJUlUl lliUJ.Ui UI 111 UI 111 UI UI UI UI UI UI UI 111 UI 111 111 UI UI UI UI UI UJ UI UI UI UI Ui UI Will UI W UI UI Ui UI 111 UI 111 til UI UI UI UI UI UI UI UI UI w0<2 wwwwwwwwwwwcnwwwwwwwwwwcpwwwwww Wb©©©©©©©©©©©©©©©©®0®“0000 0 00000®000 0000000 0 0 00 0000000CCCCCCCCCCCICCCCCCtCCCiCCCCCCCCCCCfl-CCCCCCCC CC C<E£<EC<ECCC<E<ECCCC<C<E<E<E<E<E<E<E<E<E<Ea:<EC<ECCC<ECCCCC<E<E<E<ECC<EC(ECCoooooooo.ooooqooooooqoooo.qoqqoqoqo ooo 0000000000000000000000000000000000000000000000000000 00 oooo ©b©O ©©©ON bo ON t O§S8§ 0 0 ©_©©o ©©0 o ©.©b o ©:b o o ©b o o ©f o o ©b©6 ©;6b o © o .00 —o J CASE 524 0.001 1.072 1.000 0.243 CASE 524 .*1.072 0 047 16.000 CASE 524 15.000 --- 3.500CASE525258.000 1.000 CASE 525 9.500 8.650 0.010 9.442 CASE 525 0,001 1.072 1.000 0.243 CASE 525 1.072 0.047 16/OPOCASE525 CASE 526 265.000.15 .000 0.000 4.500J.:CASE 526 8.300 8.200 0.060 9.474 CASE 526 0.003 1.148 1.000 0.226 CASE 526 .1.148 0.044 16.000 CASE 526 .;- 15.000CASE527265.000 1.000 4.500 .CASE 527 8.400 8.250 0.070 9.474 CASE 527 0.004 1.148 :1.000 0 226 CASE 527 -1.148 0.044 16;000 CASE 527 0.000 J CASE 528 272.000 15.000 3.000 CASE 528 9.000 8.550 0.020 9.506 CASE 528 0.002 1.230 1.000 0.211 CASE 528 .1230 0.041 16.000 CASE 528 CASE 529 272.000 15.000 1.000 3000 CASE 529 9;100 8.550 0.020 -9.490 CASE 529 0.002 1.189 1.000 0.219 16.000CASE5291.189 0.042 CASE 529 '■/ CASE 530 180.000 15.000 0.000 4.000 CASE 530 9.750 8.350 0.010,9.541 CASE 530 0.001 1.327 1.000 0.196 CASE 530 1.327 0.038 16.000 CASE 530 .. 15.000 1000 4.000CASE531280.000 CASE 531 9.950 8 550 0.010 9.538 CASE 531 0.001 13 18 1.000 0.197 CASE 531 1.318 0.038 16.000 CASE 531 287.000/CASE 532 15.000 0.000 4.500 CASE 532 9.900 8.550 0.010 9.634 CASE 532 7 0.001 1.612 1.000 0.160 CASE 532 '1.622 0.031 16.000 CASE 532 287.000CASE533 15 000 1.000 4.500 CASE 533 9.800 8.550 o:o2o 9.634 CASE 533 0.002 1.622 1.000 6.160 CASE 533 ..'’1.622 0.031 16.OOpCASE5337.000CASE534294.000 15.000 0.000 CASE 534 10*300 8;300 0.010 9 637 CASE 534 0.000 1.633 1.000 0.159 CASE 534 1.633 0.031 16.000 CASE 534 7.000CASE535294.000 15.000 1.000 CASE 535 10.300 8.450 0.020 9.650 CASE 535 o.ooi 1.679 1.000 6.155 *'CASE 535 1679 0.030 16.000-...CASE 535 CASE 536 301.000 15 000 0.000 2.500 CASE 536 11.700 8.150 0.020 9.842 CASE 536 0.000 2.541 1.000 0.102 CASE 536 2,541 0.020 16.000 CASE 536 - 2.500CASE537301.000 15.000 1.000 CASE 537 :11.400 8.150 0.010 9.842 CASE 537 0.000 2.541 i.ooo 0.102 CASE 537 2.541 0.020 16.000 CASE 537 CASE 538 311.000 15.000 0.000 3.000 CASE 538 10.600 8.200 0.010 9.794 CASE 538 0.000 2.291 1.000 Pi 13 CASE 538 ....2.291 0.022 :16 000 CASE 538 'A '3.000CASE539'311.000 15.000 1.000 CASE 539 10.600 8.250 0.010 10.024 ’A CASE 539 0.000 3 767 1.000 0.069 CASE .539 .3.767 0.013 16,000 CASE 539 : CASE 540 329.000 15 000 0.000 \2*000 CASE 540 11.600 8.200 0.01O 9*855 CASE 540 0.000 2.611 1.000 0.100 CASE 540 2.612 0.019 16,000, CASE 540 CASE 541 329.000 15.000 1.000 2.000 ~v CASE 541 11.300 8.200 0.020 9.871 CASE 541 0.000 2.704 1.000 0.096 : CASE 541 -2.704 OiOW 16 000 CASE 541 CASE 542 104.000 16.000 0.000 8.000 CASE 542 10 700 8.150 0 077 9.794 CASE 542 0.002 2.291 i.ooo 0.113 CASE 542 2.291 0.022 a 16.000 CASE 542 - 8.000CASE543104.000 16.000 1.000 -0.241 -0.045 19.00013.900 -0.241 -0.045 18.000 5.052 -0.223 -0.041 18.000 5.634 -0.223 -0.040 17.000 9.964 *0.209 -0.039 17.500 10.299 -0.217-0.040 15 900 6.049 -0.195 -0.037 16.000 9.322 -0.196 -0.037 13.000 7.614—0.160 -0.030 13.000 7.614 -0.159 -0.029 12.900 . 4.398 -0.159 -0.030 12 500 5.935 -0.154 -0.029 6 500 1.992*0.101 -0.019 6.500 1.992 -0.102 -0.019 8.0002.484; -0.113 -0.022 0.8001.653 -0.069 -0.013 6.100 2.166 -0.099 -0.019 5.600 2.089-0.096 -0.018 8.0001.219 -0.112 -0.020 6.000 CASE 524 muimmmmmmmmmMbJMNNNNNNNNAWWCO<4 «N N N NN muimmuimuiuimuimmmuimuimmuimmuimmm mm mmuimuimmuimuimmuiuiuiuiuimuimm m m m m m m m m mm uiNNNNNNNNNN——-a —————————_*-———————————————————————— ——oooo 00 0 0 0 0 co co co oo co *4 -4 -4N-ja»u»mmmmmmmmAAAAA W<4 <4 <4 W N NN N N —————O O O O m m m mm cn ui ui ui ui-*000000000000000cocococo UIUIUIUIUIU1UIUIUIU100000000oo00-4 -J -J -J -J o m o o o ooo NUI000 o co —oa- O A Q OOO—o O —o oAOOOOO o -«oo a o o 0 00 co m ——co ui ——co ui ——com — —co m OQ ——bo ——NO NNOO boboOOCOCOUIOOOUIO-si -J UI O -4 -u rn oOO00OO4^*0 0 AAOO NNOO —O CO UI —O CO UI 8 288 8238OWOOo«o o ——com —o co ui 8888 82880000oco00 —o co m —o co m §bb o b -4 o b00000moocooo00000 ——com —o co m oooo o <0 o o<4 <4 m o oomommooonoo ——com ——com— —A O ——A QAAUIOAAOOCOCOOOCOCOO O ——co m -J -J —Q0000NNOO ——-4 m ——com ——co WW05O 0 0 <4 O -J -J Noooo0000wWOUIUIoococooococoo 88S8o0oO <0 <4 £8NO O O 0 A 8BS8OQOO N 0 000*4 O O m *J mo 0 n *j3onomcoo<0 m m m o n m coonouioo*j -j o o OOON O O «0 N OOOW 8888 8Ki8 8 8^8OANOOCONOOOAO O O «0 <0 O O <0 <0 O O <0 « 8888 88 i 8 8888omooOOOOO*4 A o 1 1 —1 1 1 1 *v 1 —1 1 rw 1 «i>*»v 1**1 1^*iw 0 —1 1 »rOOWOOO<0 <0 O OO <0 OO0 A OOOO OO O UI OO com 00-0 OO AO 000—00®®Snn’ui onco’o bb-b bbAm b n a b b b a ui bbbm onno -bbibm b n n ui bboo000WW10Oa—o o a m o o a m *4 o aooo aoao a *4 co o aoao a co m o anaoCO<*)W O O m *4 O CO -4 N O *4 N —O AA —O NOOO CO UI <0 O -4 O A O *4000 CO *4 A O <4 O A O I I —0 0 -4 COSKd'8—A *4 O CASE 505 2.371 0.021 16.000 -0.020 CASE 505 CASE 506 129.000 15.000 0.000 5.000 12.000